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Abstract

Much of the elegance and power of Smalltalk comes from its programming environment and tools.
First introduced more than 20 years ago, the Smalltalk browser enables programmers to “home in”
on particular methods using a hierarchy of manually-defined classifications. By its nature, this clas-
sification scheme says a lot about thedesiredstate of the code, but nothing at all about theactual
state of the code as it is being developed. We have extended the Smalltalk browser with dynami-
cally computedvirtual categoriesthat dramatically improve the browser’s support for incremental
programming. We illustrate these improvements by example, and summarize the algorithms used to
compute the virtual categories efficiently.

Key words: Smalltalk browser, incremental programming, intentional programming, method
reachability, requires set.

1 Introduction

The most important of the Smalltalk programming tools is theBrowser, which al-
lows the programmer to examine, modify and extend the code of applications and
of the system itself. The Browser was revolutionary when it was first introduced,
and over the intervening years it has been improved in several ways. For exam-
ple, semi-automated refactoring have been added, leading to a tool known as the
Refactoring Browser [10], and in many Smalltalk dialects some form of package
construct has subsumed the original primitive categorization of classes. However,
the way in which today’s browser organizes the methods of a class is essentially the
same as it was in 1980: a hierarchy of manually assigned “protocols”.

In the meantime, the concept of the “Integrated Development Environment”—for
that is what the Smalltalk toolset would now be called—has proved to be so suc-
cessful that similar environments have been created for other programming lan-
guages. For example, IBM’s VisualAge for Java [7] was essentially a re-targeting of
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the Smalltalk IDE to Java; more recently the cross-language environment Eclipse [3]
has been making similar tools available for many popular languages. As these IDEs
have evolved, they have started to perform real-time analysis of the code, and now
typically provide the programmer with dynamic feedback such as syntax coloring
and message prompting.

The raw material for real-time feedback is adequate computational power. Today’s
Smalltalks run on a commodity laptop about a thousand times faster than they ran
on commodity machines of the early 1980s, and about fifty times faster than on the
custom hardware of the Dorado. This power has been harnessed to write Smalltalk
applications for real-time music and motion picture manipulation that would have
been unthinkable twenty years ago. But the power hasnot been used to build tools
that dynamically re-compute automatically defined views of an evolving program.

In this paper, we present one such tool. It derives its power from a real-time analysis
of the program being modified. This enables us to infer and display system-wide
information about the structure of the program, actively supporting incremental
programming and program understanding.

The basic idea is to display a classification of the methods of a classC into “vir-
tual categories”,i.e., categories that are computed automatically by the browser
and always kept up to date. One of the most useful is therequirescategory, which
lists all of the messages that are sent toself by the methods ofC, but for which
methods are neither defined explicitly nor inherited. We also display thesupplies
category, which contains the concrete methods ofC that implement inherited ab-
stract methods, and theoverridescategory, which contains the concrete methods
of C that override inherited concrete methods. The last virtual category,sending
super, contains the methods that perform super-sends.

Of these virtual categories, the first—the set of required methods—is the one that
we have found to be most useful. The display of this category supports “program-
ming by intention” [6], a top-down style that encourages the programmer to think
aboutwhathas to be done rather than abouthowto do it. The idea behind program-
ming by intention is to imagine methods that do “the hard part” of one’s task, so
that all that one has to do to complete the task is send the corresponding messages.
Of course, later one applies the same idea to defining the “hard” methods. In this
paradigm, therequirescategory provides a constant reminder of what is left for the
programmer to do.

We have implemented all of these virtual categories in a browser for Squeak, an
open-source dialect of Smalltalk [4,14]. In addition to being the most useful, the
requirescategory also turns out to be the trickiest to define and implement effi-
ciently; to the best of our knowledge there is no other browser that displays it. In
contrast, the definition and computation of the other virtual categories is mostly
straightforward, and recent versions of other Smalltalks (e.g., VisualWorks [16]
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and Squeak [14]) also compute some similar properties and use the results to deco-
rate method names in the browser. However, no other browsers use this information
to group methods into virtual categories that supplement the programmer-defined
categories and provide the programmer with multiple views on the code. A Squeak
image that demonstrates our browser, and contains its source code, is available [11].

This paper makes three contributions. First, we analyze the information that a pro-
grammer needs in order to be effective at incremental programming (section 2).
Second, we describe the way that our browser supplies this information, and report
on our experience using the extended browser and the way in which it changes the
programming process (section 3). Third, we define therequiredset and describe an
algorithm to compute it that runs in real-time (section 4).

2 Incremental Programming and its Demands

Even though incremental programming has been part of the Smalltalk ethic from
the earliest days, it seems not to have been singled-out as an important feature.
Ingalls’ seminal paper on the design principles behind Smalltalk [5], for example,
does not mention support for incremental programming. So it is necessary for us
to ask ourselves what incremental programming really is, and how a development
environment should support it.

Fortunately, we do not have to look far for our answers. Over the last few years,
Kent Beck and others have codified a set of practices called Extreme Programming
(XP) [1], which capture very clearly the essence of incremental work: not just in-
cremental programming, but also incremental requirements gathering, incremental
design, incremental planning, and incremental deployment. This means that instead
of bringing the work on each of these activities to an end before proceeding to the
next, programmers iterate through all of the activities multiple times, each time do-
ing only as much work as is necessary to achieve the current (incremental) goal. We
will take the “extreme” style of programming as a paradigmatic example of what a
good incremental programming environment should support.

2.1 Programming in an Extreme Environment

In an “XP shop”, the incremental and iterative style of work is applied not only to
the major development activities, but also to the work within each activity. During
implementation, this means that classes are not written sequentially, one after the
other, and finally executed only when they are all complete. Instead, a programmer
works on several classes at a time, and combines and tests them as soon as a fraction
of the functionality is implemented.

The following patterns of work seem to be central to incremental programming.
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(1) Programming with limited knowledge.A programmer starts implementing a
part before he has full knowledge of the whole system.

(2) Working in multiple contexts.A programmer may be working on several classes
in parallel. For example, he may start implementing a new method before fin-
ishing the implementation of another. As a consequence, he often switches
working context.

(3) Understanding how classes collaborate together.When working with multiple
incomplete classes at once, the programmer needs to understand how these
classes work together and how changes in one class affect related classes.

(4) Understanding what is still missing.With incremental programming, it is im-
portant to know what parts are still missing in order to make a program, or at
least a part of it, complete. The missing parts are a good indication of what
the programmer should work on next.

(5) Refactoring.A consequence of starting to program with limited knowledge is
that it is likely that the implementation will have to change as the programmer
becomes more knowledgeable. XP says that we should embrace change, not
be fearful of it. Refactoring is the secret weapon that enables us to combat the
increasing entropy and code rot that would otherwise be the result of continual
redesign and re-implementation.

(6) Testing.Writing and maintaining tests is a corner-stone of incremental and
iterative programming. Tests are used to capture the intended behavior of a
feature a soon as that feature is implemented—or even before. Tests make it
possible to refactor quickly and safely, and help us understand what is still
missing.

2.2 Supporting Incremental Programming in Smalltalk

Smalltalk was designed to support experimental programming and its integrated
environment encourages the programmer to alternate between design, coding, test-
ing and debugging [15]. Therefore, it is not surprising that the Smalltalk language
and its development environment provide rich support for four of the six patterns
of work identified above.

Since the Smalltalk language is not explicitly typed, the programmer does not have
to specify the type of method arguments or instance variables when they are intro-
duced. As a consequence, programming in Smalltalk requires less knowledge about
the design of the whole system in order to start implementing (1).

The earliest implementations of Smalltalk-80 came with a windowing system that
allowed one to open multiple browser windows and work concurrently in multiple
contexts (e.g., with multiple classes and methods) (2). More recently, this capability
has been drastically improved with new browsers such as Whisker and the Star
Browser, both of which allow one to work in multiple contexts without having to
open multiple windows. See Section 5 for more information about Whisker, the
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Star Browser, and all the other Smalltalk extensions mentioned in the section.

Since the introduction of the Refactoring Browser Smalltalk has been able to com-
mand a rich set of tools for semi-automated refactoring (5). Incremental testing was
originally supported by the practice of writing executable comments and example
methods. Because of incremental compilation [15], and because no checks for com-
pleteness are performed at compile time, it is possible to test a method immediately
after it is written. Since the introduction of the SUnit testing environment, it is now
also possible to effectively organize these tests (6).

Unfortunately, Smalltalk provides only limited support for the two remaining pat-
terns of work, which means that it is relatively hard to understand how different
classes relate to each other (3) and what is still missing to make them complete (4).

We believe that these problems can be solved by providing the programmer with
statically accessible and always up-to-date information about ways that the differ-
ent classes of a system collaborate. The task of providing this information can be
broken into several subtasks. First, we need to identify what kind of information is
needed to understand how the classes collaborate. Second, we need to be able to
compute this information in real-time. Finally, we need to find a way to make this
information readily accessible to the programmer.

In the rest of this paper, we explain how we completed these tasks for the most com-
mon form of collaboration between classes: inheritance. In Section 5, we briefly
point out how the same techniques can be applied to help the programmer under-
stand aggregation and delegation, the other major forms of collaboration in object-
oriented languages.

3 The Browser

The previous section identified some limitations in the support offered for incre-
mental programming by existing Smalltalk browsers. Now we describe our new
browser and how it overcomes these limitations. First, we discuss the categories of
information presented by our browser, and explain why this information makes it
easy to understand inheritance collaborations. Then we give an “illustrated walk-
through” of a programming session, showing how the browser facilitates incremen-
tal programming and helps programmers to understand existing class hierarchies.

3.1 Information Presented by the Browser

Our browser is shown in figure 1. At first glance it looks like the standard Smalltalk
browser, but a few extra features are visible. In the figure, the classInteger is se-
lected in the class pane (the second from the left). The third pane, which in the
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Fig. 1. The browser examining the classInteger.

standard browser contains a manual categorization of the methods of the selected
class, now contains in addition somevirtual categories. These categories present
information that we identified as key to understanding how a class collaborates with
its neighbors in the inheritance hierarchy.

The category-requires-, which is colored blue, includes all of the methods that the
classInteger sends to itself but does not define or inherit. In our figure, the list of
these required methods appears in the fourth pane, where we have selecteddigitAt:,
which is consequently displayed in the code pane at the bottom of the browser.
The implementation shown,self requirement, is a marker method generated by the
browser to indicate thatdigitAt: is an unsatisfied requirement. The same holds for
the requirementsdigitAt:put: anddigitLength. The remaining two requirements,highBit

andhighBitOfMagnitude, do in fact have implementations:self subclassResponsibility.
However, the browser recognizes this as a marker method and still categorizes them
as required. The required methods tell the programmer how the classInteger is
parameterized, and which methods are necessary in order to make it complete.1

The next category,-supplies-, lists methods that are required by some other class
and provided by the class that we are browsing. In the case ofInteger, this virtual
category contains 10 methods including*, +, −, /, <, =, andhash. This tells the pro-
grammer thatInteger’s superclass (Number) is parameterized by these 10 methods
and shows the concrete implementations thatInteger supplies for these parameters.

The third category,-overrides-, lists those methods provided byInteger that over-
ride methods inherited from its parents. In our example, there are 11 such methods,
including //, asInteger, even, floor, andisInteger. The-overrides-category is impor-
tant for two reasons. First, it gives the programmer a view on the class as a “delta”,
that is, the methods in this category characterize the parts of the behavior of the
parent class that are changed by this subclass. Second, the overriding methods, to-
gether with the supplied methods, are the most critical for the understanding of the
classInteger and reasoning about its correctness. This is because inheritance breaks
encapsulation [13]: subclasses collaborate with their superclasses through a much
broader interface than the public interface of the superclass. Taken together, over-
ridden and supplied methods represent the hooks through which the behavior of

1 Note that in Smalltalk,Integer is the abstract superclass of the concrete classesSmallInteger,
LargePositiveInteger, andLargeNegativeInteger.
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Number collaborates with the behavior specified inInteger. In particular, this means
that the behavior implemented in each of these methods ofInteger needs to conform
to the specification implied byNumber, and that these are the methods inInteger that
need to be adapted whenever the specification inNumber changes.

The fourth virtual category is called-sending super-; it contains the methods that
perform super sends(i.e., message sends that cause the message lookup to be
started in the superclass). This category is important because it tells the program-
mer which of the methods collaborate with behavior from their parent class. Fur-
thermore, all of these methods depend explicitly on their position in the inheritance
hierarchy, so special care has to be taken if they are moved during refactoring.
This category is not shown in the figure because it is empty. In fact, all the virtual
categories are displayed in the browser only if they are not empty.

Although it is not clear from the grayscale figure, each of the generated virtual cat-
egories has a characteristic emphasis: blue forrequires, green forsupplies, grey for
overrides, and underlined forsending super. Even when browsing methods using
the ordinary, manually-defined method categories, the names keep their character-
istic emphasis. So a supplied method that sends to super will always show up in
green and underlined. The blue color-coding is also applied to the name of the
class itself in the second pane whenever the set of required methods is not empty.
This serves as a reminder that the class is incomplete,e.g., it may be an abstract
class such asInteger, or the programmer may still be working on it.

3.2 Programming with the browser

Now that the reader understands the information presented by our browser, we will
illustrate how this information significantly facilitates programming in general, and
incremental programming in particular.

As a working example, we will assume that we are about to implement a hierarchy
of classes for collections in Smalltalk. We start by implementing the classCollection,
which serves as the abstract root class of our hierarchy. At this level, we will imple-
ment the most common interface methods such asisEmpty, includes:, select:, add:,
remove:, etc.. While writing these implementations, we proceed in an “intentional”
style: we need not worry about sending messages that are not yet implemented.
This is because our browser updates all the virtual categories in real-time, and as a
consequence every message that is sent to self but not yet implemented immediately
appears in the-requires-category.

As a concrete example, consider the methodisEmpty, implemented as

isEmpty
↑ self size = 0
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Fig. 2. The browser on the classSet just after it was created.

As soon as this method is accepted, a requirementsize is created. It will not disap-
pear until it is satisfied (i.e., a size method is implemented) or all the methods that
requiresize are removed. The same thing happens when we implement the method
select:, which requires the methodsdo: andemptyCopyOfSameSize.

The constant availability of therequirescategory gives us the freedom to implement
the methods in the order that they come to mind without having to worry about
forgetting to implement the methods on which they depend. Furthermore, many
errors, especially typographical errors, can be detected immediately because they
cause weird requirements to suddenly appear. A new menu item,local senders of
. . . helps us discover why a method is required: it lists the methods in the current
class hierarchy that send the selected message.

Once we have implemented the most essentialCollection methods, we create the
concrete subclassSet so that we can test our abstract implementation. Figure 2
shows the classSet just after it has been created as a subclass ofCollection. At a
glance, we see that this class is incomplete (the nameSet is blue), that it does not
yet implement any methods, and that it requires the methodsadd:, atRandom:, do:,
andremove:ifAbsent: to make it complete. (AlthoughSet does not yet have any of its
own methods, it of course inherits methods fromCollection; these requirements are
inferred by analyzing the inherited methods.)

In order to properly satisfy these requirements, we will eventually need to imple-
ment some internal methods that map the contents of the set to the instance vari-
ablesarray andtally. Again, the automatically computed list of requirements allows
us to implement these methods in whatever order we prefer, while keeping a high-
level view of what is already implemented and what still needs to be done.

Figure 3 shows our browser on the classSet after it has been completed. Because
there are no longer any unsatisfied requirements, the-requires-category has dis-
appeared. Instead, the category-supplies-appears, showing how the parameters of
Collection are satisfied bySet. We also see the category-overrides-, which contains
methods such as=, asSet, copy, includes: andsize. These are the methods that the
classSet overrides in order to modify the default behavior or to provide a more
efficient version.
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Fig. 3. The browser examining the classSet after it is completed.

Besides the fact that these two virtual categories are essential for understanding the
relationship ofSet to its parent, they also help the programmer to avoid “inter-level”
errors between these classes. Because the methods in these categories capture the
collaboration betweenCollection andSet, they are exactly the methods that must be
examined if the specification inCollection is changed. For example, if we change the
way thatCollections are compared, we need to ensure that the overridden method=

is updated accordingly.

After testingSet, let us suppose that we move on to create some sequenced collec-
tion classes such asOrderedCollection andHeap. Since these classes will have some
code in common, we decide to make them both subclasses of a new abstract class
SequenceableCollection, which will itself be a subclass ofCollection. When looking at
these three classes with the browser, we see that they all require the same methods,
namelyadd:, atRandom:, do:, andremove:ifAbsent:.

Instead of implementing these three classes one after the other, we can now take ad-
vantage of the freedom granted by incremental programming and work on all three
classes in incremental steps. This means that we go through these requirements and
the necessary internal methods and decide for each method in which class it should
be implemented. During this process, which may also include refactoring actions
such as pushing methods up or pulling them down in the hierarchy, the features of
our browser always give us up-to-date information about what methods are required
for each of these classes and how they collaborate.

Concretely, we might start with the requirementdo:, and decide that we should
implement this in the classSequenceableCollection as follows.

do: aBlock
1 to: self size do: [:index | aBlock value: (self at: index)]

As soon as we accept this code, the browser shows us that we now have a new re-
quirementat: in SequenceableCollection and its two subclasses. Sinceat: obviously
must be implemented differently inOrderedCollection andHeap, we then proceed to
implement the twoat: methods in the subclasses. This is reflected in the browser,
which shows at a glance thatat: is now a parameter of the abstract classSequence-

ableCollection and that it issuppliedby different methods in both of the concrete
subclasses.
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Fig. 4. The browser examining the classHeap.

Figure 4 shows the classHeap as it results from this process. In the figure, we have
selected the virtual category-sending super-, which contains a single method=.
This tells us that there is only one method that uses the keywordsuper to access
an overridden implementation in the parent class and which is therefore vulnerable
to refactorings. The two other virtual categories,-supplies-and-overrides-, tell us
how Heap implements the parameters of its abstract parent classSequenceableCol-

lection and which of the inherited methods it overrides.

3.3 Understanding and modifying existing classes

In the previous section, we have shown how our extended browser helps one to
create a new class hierarchy. In addition, our experience has shown that the browser
is also a great help when one must understand and modify existing classes and class
hierarchies.

As an example, consider the collection hierarchy that we have just created. If a new
programmer looks at this hierarchy, the virtual categories of the browser provide
valuable guidance in understanding both the higher-level purpose and the lower-
level implementation of each of the classes. This is because these categories sepa-
rate information that is essential to understanding the collaboration from the rest of
the code, and thus make the overall architecture more explicit. Once the program-
mer has a basic understanding of the parent class, she will need to look only at a
small part of the code of a subclass in order to understand how that subclass relates
to its superclass.

These features are even more important when it comes to extending a class in an
existing hierarchy with some new features. Such an extension is quite common,
particularly if the hierarchy was created incrementally, or following the XP doctrine
of doing the simplest thing that could possibly work to satisfy the requirements
that are currently available [1, Chapter 17]. Especially in complex hierarchies, it is
quite easy to introduce “inter-level” errors, for example, by modifying or extending
a class and forgeting to make all of its subclasses compatible with these changes.
Not only does the browser help to avoid making such inter-level errors, it also shows
us an overview of which subclasses accidentally became abstract, and are therefore
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incomplete.

Although it might seem that these problems are easy to avoid without virtual cate-
gories, our experience has shown that this is not the case. When we introduced our
new browser into Squeak, we immediately found dozens of abstract classes that
should actually be concrete, as well as hierarchies that exhibited other inter-level
errors such as sending unimplementedsuper messages. The most surprising thing
was that we found these errors even in the core of the system, which has been used
by thousands of users for many years. For example, classes likeFraction, Bitmap,
CharacterSet, Debugger, and nearly all subclasses of the classMorph—which is the
root class of Squeak’s user interface framework—are accidentally abstract, simply
because programmers forgot to implement some methods.

We find this to be convincing evidence not only that our browser extensions are
necessary to avoid such errors in the future, but also that they provide great help
in finding and eliminating these errors in existing class hierarchies. Since abstract
classes are “blue”, finding them is trivial. Having the requirements continuously
available in an up-to-date virtual category also makes it straight-forward to identify
the cause of the problem and eliminate it.

4 Implementation

Most of the virtual categories that are displayed in our browser can be computed
straightforwardly. the exception is therequiresset. In this section, we therefore
focus on an algorithm for computing therequiresset efficiently enough for it to be
displayed in real-time.

To compute the required methods of a class we must consider all of the class’s
reachablemethods, that is,

(1) all methods that are locally defined in the class,
(2) all non-overridden methods defined in its superclasses, and
(3) all methods that may be reached by super-sends from other reachable methods.

The requires set of a class contains all of the message selectors sent toself in one
of the reachable methods, minus the selectors of the methods provided by the class
(and by its superclasses). These definitions have been formalized in a technical
report [12].

In order to compute this set, we first must find the self-sends and super-sends of a
method. Whereas the super-sends can be immediately retrieved from the byte-code,
computing the self-sends is more complicated, because they do not all emanate
from a single syntactic construct. Consider, for example, the following method.
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fasten
| anObject |
self hook.
anObject := self.
anObject button.
self class new clip.

From the byte-code of this method, it is immediately clear thathook is sent toself.
What aboutbutton and clip? These messages are also sent to an instance of the
current class, and so they are really self-sent too. However, detecting this requires
a deep analysis of this method, as well as of the methodnew on the class side.

Our current implementation does not carry out such an analysis. This means that in
the above method,hook is the only self-send that we would detect. We compensate
for this deficiency by allowing the programmer to declareexplicit requirementsby
implementing a method with the bodyself explicitRequirement.

Even with this simplification, computing the requires set in real-time is quite chal-
lenging. The main problem is that a single change in a class may affect the requires
set of all its subclasses. Thus, a change inObject may mean that we have to update
the required methods of all of the classes in the system. A naive implementation
based on the above definition would be far too slow to provide the programmer
with useful feedback (see section 4.4 for a performance comparison). Updating the
requires set in real-time required an optimized algorithm that caches critical data
and takes advantage of the coherence of the inheritance hierarchy.

4.1 Caching Self-Sends and Super-Sends

Because computing the self-sends of a method requires some time-consuming anal-
ysis of the code, and because recent Squeak images contain more than 60 000 meth-
ods, we decided to cache the self-sends for every method. This means that the self-
sends of a method are inferred only once: when the method is first created.

When computing the requires set, looking for methods that contain a certain self-
send is far more common than looking for (or modifying) the self-sends of a par-
ticular method. Therefore we index the caches by the sent selectors: for each class
C we maintain a dictionary whose keys are the selectors that are self-sent by the
methods directly implemented inC, and whose values are the array of selectors
that name the methods that perform those self-sends. For example, if the selectorx

is sent toself by the local methods ona andb, looking upx returns the array#(a b).

Super-sends are critical for determining the set of reachable methods, so we also
maintain a cache of the super-sends that are issued by the local methods of each
class; this cache is similarly indexed by the super-sent selectors rather than by the
selectors of the methods that perform the super-sends.
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4.2 Using the coherence of the inheritance hierarchy

When a method is added, modified or removed, we need to check its class, and all
its subclasses, to see whether there is any effect on the requirements. The heart of
this computation is checking whether a given selector is self-sent in a given class.
Especially in the case of large hierarchies, performing this check separately for each
subclass proved to be far too slow. Therefore, we developed a recursive algorithm
that takes advantage of the coherence that typically exists between neighbor classes
in the inheritance hierarchy.

The main method of our algorithm is applied initially to the topmost classC; it
ascertains recursively, forC and each ofC ’s subclasses, whether that class self-
sends a given selectorx. As the method proceeds down the inheritance hierarchy,
it keeps track of the set of methods that self-sendx. Unlessall of these methods
are overridden in the next subclassC ′, we immediately know thatC ′ also self-
sendsx. Otherwise, we call a helper method that tries to find some methods that
contain self-sends tox and are actually reachable from this subclass. The helper
method first searches the local methods ofC ′, and then recurses through all the
superclasses until it either finds such a method or reaches the top of the hierarchy.
While going up the inheritance hierarchy, we maintain the set of all the unreachable
methods in order to avoid false positives.

We now give a more detailed description of both the main method and the helper
method.

Main method. The main method of the algorithm searches through the argument
classC and all its subclasses and ascertains which of these classes self-sends the
selectorx. In addition toC and x, this method also takes an argumentS, a set
containing the superclass methods that are known to issue self-sends tox. This set
is empty when the main method is called on the first class of the hierarchy. The
method proceeds as follows.

(1) We identifyS ′ ⊆ S that are reachable from the classC. This means checking
which methods inS are not overridden inC, or, if they are overridden, are
nevertheless reachable by a super-send from a method inC.

(2) If S ′ is empty, we call the helper method discussed below to search for reach-
able methods that self-send the selectorx. The result is stored asS ′.

(3) If S ′ is still empty, we indicate thatC does not self-sendx. Otherwise we
indicate that the classC does self-send the selectorx.

(4) We perform a recursive call for each of the direct subclasses ofC, passingS ′

as a parameter.

Helper method. The purpose of the helper method is to find a set of methods that
contain self-sends to a selectorx and are reachable from the classC. In addition to
C andx, this method takes a third argumentU , the set of all selectors that have
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been found to be unreachable. This set is empty when the method is called from the
main method. The computation proceeds as follows.

(1) We check whether the classC contains local methods that issue a self-send to
x and whose selectors are not in the setU of unreachable selectors. If we find
some, we return them and exit.

(2) Before we use recursion to search the superclass methods, we construct the set
U ′ of all the superclass selectors that are unreachable from the class for which
this helper method was initially called. Since all the unreachable selectors in
C remain unreachable, the setU ′ includes all the selectors inU . In addition,
U ′ contains all the selectors for which methods are defined inC (and therefore
potentially override superclass methods) and which are not super-sent inC.

(3) We use recursion to find superclass methods that contain a self-send tox. In
order to avoid finding unreachable methods, we pass the setU ′ as a parameter.
These methods are stored asR.

(4) For each method in the setR, we check whether it is reachableonly by a
super-send. If so, we replace it by the local method that performs the super-
send. Then we return the resulting setR.

4.3 Discussion

The above description conveys the basic idea of our algorithm, but omits some
details. We now discuss some of these details and also make some general remarks.

Optimization of the helper method. In our implementation, we use an opti-
mized version of the helper method. The main difference from the description
above is that we employ temporary caches to avoid repeating the computation in
step (3). Without this optimization, the helper method might, for example, compute
the self-sends to a given selector in classObject over and over again, even though it
may already be clear that no such self-sends exist.

It is important to note that the helper method does not in general computeall the
reachable methods that self-send the given selector. Our experience has shown that
it is more efficient to stop at whatever level of the hierarchy we find the first self-
sends. This is because overrides are relatively rare, and therefore the setS in the
main method does typically not have to be very big in order to avoid multiple calls
of the helper method.

Cache access. We see that the caches are well-suited to the algorithm. In step (1)
of the main method and steps (2) and (4) of the helper method, we are able to check
whether a selector is reachable via a super-send with a single lookup in the super-
send dictionary. Similarly, in step (1) of the helper method, we can find all the local
methods that issue a self-send tox by a single lookup in the self-send dictionary.
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Cache consistency. The caches can be kept in a consistent state quite cheaply.
This is mainly because the caches contain only local data, that is, the the cache for
a particular class is independent of all the other classes in the hierarchy. Thus, mod-
ifying a class requires updating at most the local cache for that class. Furthermore,
changing the place of a class in the hierarchy does not affect the caches at all.

4.4 Performance Comparison

Our first implementation of the browser deployed caches for the self-sends and
super-sends of every method. However, unlike the approach presented above, these
caches were indexed by the selectors of the methods performing the self-sends
rather than by the selectors that were sent. Furthermore, our initial algorithm did
not take advantage of the coherence in the class hierarchy. This meant that the
method for finding out whether a classC self-sends a selectorx was applied to
each class separately. Using this implementation to find out which classes in the
system required the selector+ took several minutes (188 seconds)2 , which made it
impossible to provide immediate feedback.

In a second version of the algorithm, we used the same caching strategy, but took
advantage of the coherence in the class hierarchy. Performance improved signif-
icantly, but the same computation still took over 9 seconds. Finally, using the
caching strategy and the algorithms presented above, the same test takes less than
100 milliseconds and thus meets our requirement for instantaneous feedback.

5 Related and Future Work

The idea of keeping an automatically updated list of things that remain to do dates
back at least as far as the “grass catcher” of Trellis [9], and has been adopted in
some form or other in many IDEs; the “Tasks” window of Eclipse is another ex-
ample. However, such lists are typically a by-product of a global re-compilation,
rather than being constructed modularly as the consequence of a change to a single
method, as in Trellis and in our virtual categories.

Recently, there have been other extensions to Smalltalk browsers that provide the
programmer with automatically updated information about the code. In the intro-
duction, we mentioned that there are Smalltalk implementations such as Visual-
Works that decorate method names in the browser to indicate things such as super-
sends or overrides. However, these browsers neither use this information to group
methods into virtual categories nor compute the required methods.

2 All the performance data provided in this paper were measured in a Squeak 3.2 image consisting
of 1860 classes, and were executed on a Mobile Pentium III 1.2GHz with 512MB RAM.
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SOUL, the Smalltalk Open Unification Language [17], is an open, reflective logic
programming language written in VisualWorks Smalltalk. Although it is not itself
a browser, it can be used to extend a Smalltalk browser with many kinds of logical
reasoning, triggered by the occurrence of an action such as accepting a method.
This ability has been used to formulate queries that look for composite patterns,
and to infer the types of instance variables. SOUL has also been used to create
“virtual classifications” that map source-level artifacts to higher-level architectural
components (and vice versa) [8].

The Refactoring Browser adds many useful features for semi-automated refactoring
to the standard Smalltalk browser, and is available for several Smalltalk implemen-
tations including Dolphin Smalltalk [2], VisualWorks, and Squeak. Refactorings
supported by this browser include moving methods up and down the inheritance
hierarchy, to extracting a block of code into a method, and renaming instance vari-
ables and methods. The Refactoring Browser uses type inference to help the user
to deciding which senders actually refer to the method being renamed

Whisker is a Smalltalk browser implemented in Squeak. Whisker’s main contribu-
tion is a screen layout that provides a simple and intuitive way to view the contents
of multiple classes and methods simultaneously, while using the screen efficiently
and avoiding the need to manually move and resize windows. Whisker does this by
using subpane stacking,i.e., dynamically stacking subpanes into a single column.
Whisker also infers and displays information about the classes of objects that are
bound to the instance variables of a class.

Another extended browser is the Star Browser [18], which is available for Squeak
and VisualWorks. Like Whisker, the goal of the Star Browser is to allow the pro-
grammer to establish a working context without having to deal with too many win-
dows. Unlike Whisker, the Star Browser is built on top of a lightweight classifica-
tion model that allows one to categorize any sort of item such as classes, methods,
method categories,etc.. Besidesextensional classificationsthat are just bags of
items, the model also allows one to expressintentional classifications, which are
defined by a description, and whose contents are updated automatically.

Despite these improvements, we believe that there remain many opportunities to
improve the Smalltalk programming environment. One example is applying the
techniques of this paper to provide the user with always up-to-date information
about the collaborations between classes in aggregation and delegation relation-
ships. We believe that identifying the key information necessary to understand these
collaborations could lead to tool and process improvements similar to those that we
have observed in the case of inheritance. For example, a browser might support a
virtual category showing the methods that a class requires in order that its instances
understand all the messages delegated to them.

However, the process of actually computing this information will be much harder
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because, unlike inheritance, aggregation and delegation are dynamic collaborations.
Especially because Smalltalk is not statically typed, it is not immediately clear
which instance variables and method arguments may refer to instances of which
classes. Nevertheless, this problem can be tackled by combining the results of type
inference with information about the classes of instance variables and method ar-
guments that is gathered dynamically. Although this will not always lead to com-
pletely accurate information, it seems likely that approximate information will be
quite adequate in practice.

6 Conclusion

We have identified four virtual categories that, if updated in real-time, provide valu-
able insight on the program under development. In fact, this categorization gives the
programmer a different view on the code: it structures the space of methods in a way
that is quite different from the explicitly declared protocols. Whereas the protocols
group the methods according to their role in the domain logic (i.e., testing, printing,
model access,etc.) the virtual categories group the methods according to their role
in the composition, that is, the way that the class interacts with its neighbors in the
inheritance hierarchy.

Our experience with the extended browser has shown that this viewpoint is very
valuable both for writing and for understanding the code. While writing, it sup-
ports an incremental style of programming: the programmer can freely compose
components and add methods, and rely on the browser to maintain an overview
of what still remains to be done and where possible problems (e.g., open require-
ments, conflicts, and overrides) might lie. Later, the same view helps a programmer
to understand the code, because at a glance she can see all the critical methods that
are essential for understanding the interaction between the various components.
This stands in contrast to the conventional viewpoint, which leaves the program-
mer the task of finding these critical methods by looking through many methods
(sometimes hundreds), spread over many protocols.

From an implementation point of view, most of these categories are quite easy to
compute. By far the most challenging is the computation of the requires set. There
are three reasons for this. First, the absence of explicit type information makes it
hard to detect the requirements; second, finding whether a method is reachable turns
out to be non-trivial; and third, heavy optimization is required to obtain real-time
performance.

Nevertheless, our experience has shown that these obstacles can be overcome. Al-
though we choose a very simple algorithm to infer self-sends, in practice most of
the requirements are detected. Furthermore, caching of information about the re-
quirements means that the requires set can be re-computed quickly, even after a
change that affects many classes.
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