
Unanticipated Integration of Development

Tools using the Classification Model

Roel Wuyts and Stéphane Ducasse

Software Composition Group
Institut für Informatik und angewandte Mathematik

Universität Bern, Switzerland

Abstract

The increasing complexity of software development spawns lots of specialised tools to
edit code, employ UML schemes, integrate documentation, and so on. The problem
is that the tool builders themselves are responsible for making their tools interoper-
able with other tools or development environments. Because they cannot anticipate
all other tools they can integrate with, a lot of tools cannot co-operate. This paper
introduces the classification model , a lightweight integration medium that enables
unrelated tools that were not meant to be integrated to cooperate easily. More-
over, the tool integration is done by a tool integrator, and not by the tool builder.
To validate this claim, we show how to integrate several third-party tools using
the classification model, and how it forms the foundation for the StarBrowser, a
Smalltalk browser integrating different tools.

1 Introduction

As software systems get increasingly more complicated, developers need to
be able to rely on adequate programming languages and development en-
vironments. Therefore lots of specialised tools exist that help developers to
cope with a certain aspect of software development. For example, develop-
ment browsers provide sophisticated ways to edit and navigate source code,
while UML tools allow developers to draw class diagrams and sequence dia-
grams. There is one problem however: these tools have to be used together
in order to implement the systems that need to be finished. Hence they have

Email addresses: roel.wuyts@iam.unibe.ch (Roel Wuyts),
ducasse@iam.unibe.ch (and Stéphane Ducasse).

Preprint submitted to Elsevier Science 7 July 2003

to cooperate somehow, and this is most of the time problematic, due to the
following reasons:

• Each tool typically uses its own GUI, and its own conceptual model to store
and represent information. It is the tool user who has the responsibility to
combine the results from different tools.

• It is hard to make the tool work on new kinds of items. Suppose, for example
that we have a UML tool in the development environment that knows how
to display a class diagram of all classes in a certain package. Adapting this
tool to now take as input the results from another tool that does not work
with packages is a major undertaking.

When tools properly work together, synergy occurs: the output of one tool can
be used as input for another. This is what we call integration of tools in the
scope of this paper. For example, integrating a UML tool in a development
environment makes it possible to show a UML diagram of all the classes in a
certain namespace. When integrating a software architecture tool in the same
environment afterwards, it is possible to show UML diagrams of the classes in
a layer of the architecture of a system. These combinations are endless, and
allow a developer to navigate and combine the tools easily to help with the
task at hand.

To allow the integration of tools some environments (like Microsoft’s Manage-
ment Console or the Open Source Applications Foundations’ Chandler) have
an integration architecture that tools can follow to cooperate with the platform
and each-other. We call this form of tool integration anticipated integration:
the tool builder has made sure that the tool adheres to a certain integration
platform. While this has the advantage that the tool is not stand-alone any-
more, it has the drawback that it can be very hard to make it compliant to
an integration platform (due to the complexity and to the fact that the code
of the tool is needed to make the changes). Moreover, it does not solve the
problem that the tool cannot be integrated with other tools that were not
built on the integration platform.

This paper tackles the problem of unanticipated integration: integrating unre-
lated tools that do not adhere to a certain integration platform. As solution
we present the classification model , a lightweight grouping mechanism for ob-
jects that are acted upon by services. The design of the classification model
combines a composite and visitor design pattern [4], which makes it easy to
comprehend and extend. It serves as a lingua franca for tools, and provides a
clear separation of concerns between the tools to be integrated, the glue code
to do this, and the integration model. This has the important benefit that
each of these distinct phases is done by different developers (the tool builder,
the tool integrator and the model builder), who are not necessarily aware of
each other.

2

We have implemented the classification model in the VisualWorks [2] and the
Squeak [6] Smalltalk environments. The most important user of the model is
the StarBrowser 1 that acts as a shell around existing Smalltalk development
tools such as the object inspector, development browsers and UML tools,
effectively integrating them.

The contributions of this paper are:

• the presentation of the classification model,
• the unanticipated integration of tools by customising the classification model,
• the practical application of the integration by building a concrete develop-

ment tool, the StarBrowser.

The rest of this paper is structured as follows. Section 2 introduces the classi-
fication model in detail. Section 3 shows how the model can be customised to
accommodate for new kinds of items or services. Then Section 4 shows how
the classification model is used to integrate tools that were not designed to
cooperate. Section 5 shows the StarBrowser, a browser that uses the classi-
fication model to integrate with the Smalltalk environment and other tools.
Section 6 discusses several aspects of the classification model in more detail,
while Section 7 discusses related work. Finally, Section 8 concludes the paper.

2 The Classification Model

The classification model allows to group all kinds of entities and to uniformly
manipulate these entities and groups. Particular about the model is that the
grouping is independent of the manipulations, and that the model can be
customised to either support particular groupings or to support particular
manipulations or both. The following sections describe the model and discuss
its design rationale.

2.1 Overview

The classification model is built on the following main concepts, shown in
Figure 1:

• items. An item is anything tangible as an object in the software development
environment, such as a class, a namespace, an image, an HTML file, . . .

1 The StarBrowser can be freely downloaded from the StarBrowser Web page at
http://www.iam.unibe.ch/∼wuyts/StarBrowser/index.html

3

ServicesConfiguration
configuration

Service

doObject:
doExtensionalClassification:
doIntentionalClassification:

Item

acceptService:

Classification
name

ExtensionalClassification

acceptService:

IntentionalClassification
itemsDescription
acceptService:

items

1..*

*

item
visitor

parent

ObjectAsItemWrapper
object
acceptService:

Fig. 1. Diagram showing the core concepts of the classification model: items, clas-
sifications, services and the service configuration.

• classifications. A classification is a group into which items are classified,
and basically is a container for items. Items do not have to be of the same
type, and it provides behaviour for enumerating and managing the items
it contains. For example, a classification ‘Popular Classes’ can contain the
most browsed classes or the classification ‘My Architecture’ can contain the
items that make up your software architecture.

• services. A service implements an action that can be performed on items.
Depending on the kind of item, a service can perform a different action. But
it should at least provide a default action that is able to process any kind
of item that is passed. Examples of services can be a service that gets the
children of an item, a label for an item, or a preferred editor.

• service configuration. This is a registry where services can register under a
certain name to be retrieved by tools.

There are no restrictions on the number of items in a classification and an
item may be classified into more than one classification. Since a classification
is an item itself, it can be part of other classifications as well. We differentiate
between two kinds of classifications:

• extensional classifications enumerate items. For example, while browsing
the code in a system, a developer can add classes and methods of interest
into an extensional ‘Favourites’ classification.

• intentional classifications compute their items according to a description.
For example, we can define a classification as consisting of a certain class
and all its subclasses. Or we can describe a classification that consists of all
the senders of a certain methods in the context of another classification.

Classifications support a full range of set operations (unions, subtractions and
intersection) to make it easy to recompose their elements. For example, sup-
pose that we have two classifications: an extensional classification ‘Favourites’
containing a collection of classes we are interested in, and an intentional clas-

4

sification ‘My classes’ that calculates all the classes in my namespace. We can
then intersect ‘Favourites’ and ‘My classes’, and obtain a classification ’My
favourite classes’.

Services are registered in a services configuration under a service name they
specify. Anybody in need of a service retrieves it from the services configuration
by its service name. Different services can register under the same name, in
which case one of them becomes the ‘active’ service. When asking for a certain
service, clients do not know exactly which service implementation they get. For
example, they can ask for a service returning icons for items. If the services
configuration has different services for returning icons, the active one will
be returned. Swapping the active one for another will result in the clients
using different icons without the need to change a single line of code in the
client. Note that the provider of the service has to make sure that services
with the same name are compatible. Unit tests are provided that enforce this
compatibility between services registered with the same name.

2.2 Design Rationale

We made two important design decisions for the classification model. The
most important one was to split the behaviour of items in two: the behaviour
dealing with managing items (adding, removing, enumerating, ...) is imple-
mented on the items themselves. All other behaviour regarding items (their
icons, labels, editors, . . .) is implemented using the services, using the Visitor
design pattern. There were two motivations for choosing a visitor:

• Keep the interface small. In the Smalltalk implementation, an Item can be
any kind of Smalltalk object. Since we did not want to clutter the interface
of the class Object with all kinds of item-specific methods, we only add one
method (the method acceptService:) to enable a Visitor to implement the
services.

• Swap services at runtime. The services can be changed at runtime, which
is not possible if the behaviour is directly implemented as methods on the
item classes.

A second decision was to wrap objects in a wrapper class ObjectAsItemWrap-
per, a subclass of class Item that implements the method acceptService: as
follows:

ObjectAsItemWrapper� acceptService: aService
ˆself object acceptService: aService

Therefore any kind of object can be wrapped as an item provided it implements
the method acceptService:, where it determines what method needs to be

5

Service

doObject:
doExtensionalClassification:
doIntentionalClassification:

ChildrenService

doObject:
doExtensionalClassification:
doIntentionalClassification:

IconService

doObject:
doExtensionalClassification:
doIntentionalClassification:
iconFor:

IconSupport

Classifications

doObject: anObject
^self iconFor: #objectItem

doExtensionalClassification: aClassification
^self iconFor: #extentionalClassification

doIntentionalClassification: aClassification
^self iconFor: #intentionalClassification

iconFor: name
^ListIconLibrary visualFor: name

Fig. 2. Adding a new Icon service by subclassing the Service class. IconService is
put in its own package (package IconSupport, in dark grey). Only the service classes
are shown in the Classifications package (in light grey).

called on the service to process that item.

The result of both these design decisions is a lightweight model. The next
section describes how this model can be customised to accommodate for new
kinds of items and services.

3 Customising the Classification Model

The classification model described in Section 2 can be customised in two or-
thogonal ways: extra services can be added and new kinds of items can be
supported. This section explains both of these customisations. In the next
section we then see how this is used by the tool integrator to support unan-
ticipated integration of tools.

3.1 Adding New Services

Services define the actions that can be performed on items, following the well-
known Visitor design pattern. Because they are de-coupled from the items,
new services are added by subclassing existing services, in the “classical” Vis-
itor scheme. For example, suppose that we are building an application that
needs to show items in some GUI, and that wants to show icons for each item.
Then this application needs to know which icon to use for each item. This is
done by adding a new service as subclass of the existing class Service, and
overriding the methods for which icons need to be returned. Figure 2 shows

6

Service

doObject:
doExtensionalClassification:
doIntentionalClassification:

ChildrenService

doObject:
doExtensionalClassification:
doIntentionalClassification:

IconService

doObject:
doExtensionalClassification:
doIntentionalClassification:

MethodDefinition

IconSupport

Classifications

Smalltalk
doMethod:

doMethod:

MethodSupport
acceptService:

doMethod: aMethod
^self iconFor: #methodItem

acceptService: aService
^aService doMethod: self

doMethod: aMethod
^self doObject: aMethod

Fig. 3. MethodSupport is a package that extends the Classifications and IconSupport
packages to add support for methods. It contains three class extensions.

the implementation needed.

3.2 Supporting Custom Items

In Section 3.1 we added an icon service to return icons for items. However,
it only supports three kinds of items: objects, extensional classifications and
intentional classifications. Now suppose that we want to add support for an-
other item, say a method, so that we can return a specific icon for it. To do
this, we need to do two things: extend the class implementing a method with
an acceptService: method and extending the services that want to take advan-
tages of methods with a new Visitor method (for example doMethod:). This
is shown in Figure 3.

Note that the implementation of doMethod: on class Service simply calls doOb-
ject:. As a result, all services that do not need to support methods explicitly,
will process methods as objects. For example, there is a service called Item-
Children that returns the ’children’ of an item. Asking for the children of a
method item by sending doMethod: to an instance of class ItemChildren will
result in sending doObject: to that instance, hence processing a method as a
generic object.

7

4 Unanticipated Tool Integration

Sections 2 and 3 introduced the classification model and showed how it can
be customised to support new kinds of services and items. In this section we
show how this is used to integrate the models of tools that were not designed
to cooperate together.

4.1 Integration Overview

As said in the introduction, we consider tools to be integrated when the out-
put of one tool can be used as the input for another tool. To solve the problem
of unanticipated integration, somehow a format has to be introduced to in-
tegrate tools, but without changing these original tools. The idea is to use
the classification model as a first-class glue format to bridge the tools to be
integrated. Using the classification model for this purpose has the advantage
that items are manipulated uniformly (meaning that making the output of
one tool ’compatible’ with the classification model immediately allows that
tool to work with all tools that have compatible input). Another important
advantage is the set operations available on classifications, meaning that once
a tool is integrated it can be used to calculate unions or differences with results
from other tools. While trivial at first, this makes it easy to make semantic
operations that combine the output of different tools.

To integrate tools using the classification model, tool output has to be made
tangible as items and a translation has to be provided from items to whatever
is needed as input:

• Disguise output as items. The output of a tool, some object, has to be
tangible as an item. If the classification model already knows about that
object, nothing needs to be done. If the classification model has no support
for that kind of object, it needs to be customised. For example, suppose that
we have a tool (the Smalltalk system itself) that produces classes as output.
Since the classification model does not know about classes, we extend it. As
described in section 3, this boils down to adding the method acceptService:
on the class ClassDescription, and adding the method doClass: on the class
Service.

• Create service for input. To make a tool work with items as input, we create
a service that translates items to the input needed by the tool. For example,
as we will see when integrating the UML editor Advance, we create a service
that maps items to so-called ‘subjects’, used internally by Advance.

It is important to note that the tools themselves do not need to be changed.
It is just the classification model that gets customised. Moreover, the respon-

8

sibility for integrating the tools does not lie with the tool developer, but with
the tool integrator. This is a major difference between the approach allowed
by the classification model and an up-front integration architecture that tools
should comply with.

4.2 Example: Integrating Advance and SmallBrother

We illustrate the unanticipated integration of tools with a concrete example
showing how to combine the output of SmallBrother , a coding assistant that
tracks browsing behaviour, with Advance, a UML tool developed by IC&C
and shipped with the VisualWorks Smalltalk environment [2].

SmallBrother. SmallBrother tracks the methods browsed by a developer
while working. Every-time a method is selected, this is intercepted and the
class, selector, and a time-stamp are kept in a database. This database can
then be queried for information regarding the history and browsing behaviour.
We can for example evaluate the following piece of code to get the 20 most
recent methods that were browsed:

MethodHistory uniqueInstance recentMethods: 20

Other things we can ask for are, for example, the number of times a method
was browsed, or what classes have been used a lot. The results of these queries
are collections of objects. Therefore the mapping is easy in this example: an
intentional classification is used that computes its items:

IntentionalClassification name: ’Recent Methods’
description: [MethodHistory uniqueInstance recentMethods: 20]

Advance. Advance is a UML tool for the VisualWorks Smalltalk environment.
To let Advance work with items, we create a new service, class AdvanceEditor,
with the methods shown in Figure 4. This class implements methods that visit
items (doExtensionalClassification:, that calls doClassification:, and doPar-
cel:). These methods convert items to an internal Advance representation, the
subject. The other two methods, createSubjectForItem: and doForSubject: are
auxiliary methods that generate a subject (which is a class) on the fly, and
open an Advance diagram tool on the subject.

We want to stress that we are not the developers of the Advance tool, and
that none of the existing Advance tools had to be changed to make them
classification model compatible. As tool integrators we just implemented some
glue code to convert items to subjects, and pass these subjects to Advance.

9

AdvanceEditor� doParcel: aParcel
”Perform the service defined by the receiver on the pundle passed as argument.”
| subject |
subject := self createSubjectForItem: aPundle add: aPundle definedClasses.
ˆself doForSubject: subject

AdvanceEditor� doExtensionalClassification: aClassification
”Perform the service defined by the receiver on the classification passed as argument.”

ˆself doClassification: aClassification

AdvanceEditor� doClassification: aClassification
”Perform the service defined by the receiver on the classification passed as argument.”
| classesInClassification subject classItemsInClassification |
classItemsInClassification := (aClassification select: [:item | item isBehavior]) items.
classesInClassification := classItemsInClassification collect: [:item | item unwrappedItem].
subject := self createSubjectForItem: aClassification add: classesInClassification.
ˆself doForSubject: subject

AdvanceEditor� createSubjectForItem: item add: classes
”Generate a subject class to make Advance happy, and add the classes to it.”
| subjectClass subject subjectName |
subjectName := self subjectNameForItem: item.
subjectClass := self createSubjectClassNamed: subjectName.
subject := self advance subjectEnvironment makeClass: subjectClass

subjectNamed: nil.
subject addClasses: classes.
ˆsubject

AdvanceEditor� doForSubject: subject
”Build an Advance diagram using the given subject, and open a painter for it.

Use this painter as the new editor and return it.”
| diagram diagramName painter |
diagram := subject fakedDiagram.
diagramName := diagram name = self advance diagramSpecClass fakeName

ifTrue: [nil]
ifFalse:

[self diagramSelectionIsValid ifFalse: [ˆself updateWithNotification].
diagram name].

painter := self advance diagramPainterClass new.
self doForEditor: painter.
painter openDiagramOn: subject name: diagramName.
ˆpainter

Fig. 4. The implementation of the class AdvanceEditor that allows one to use the
Advance UML tool with items.

5 The StarBrowser

The main application of the classification model is the StarBrowser. The Star-
Browser is a VisualWorks Smalltalk [2] 2 development browser. By itself it
provides only a toolbar, an interface to display classifications as a tree, a part
where editors for these items can be shown, and a mechanism to allow a user
to switch services using the ServicesConfiguration. It extends the classifica-
tion model to support classes, methods, namespaces, packages, bundles, and
parcels. All its other functionality is implemented in a number of services:

• editor: The editor service is responsible for adding an editor on the currently

2 See http://www.cincom.com/scripts/smalltalk.dll//Home.ssp for more informa-
tion and downloads.

10

Fig. 5. StarBrowser in VisualWorks editing a method selected in the classifications
tree.

selected item in the classifications list. This editor is embedded on the right
of the classifications list. It integrates tools to edit all kinds of source code
entities with the Refactoring Browser [10] and objects with the Trippy ob-
ject inspector. The application returned by the editor service is integrated
in the StarBrowser using VisualWorks’ subcanvas technology. The toolbar
of the editor (if there is one) is merged with the toolbar of the StarBrowser.

• icon: The icon service is responsible for showing the icon of an item in the
classifications tree.

• label: The icon service is responsible for showing the label of an item in the
classifications tree.

• menu: The menu service is responsible for returning the operate menu that
users get when they right-click on an item in the classifications list.

Figure 5 shows the StarBrowser in action. The left tree view shows the classi-
fications tree that this browser is opened on. Right of the tree is an editor for
the currently selected item, as given by the editor service. It currently shows
a Refactoring Browser on the selected method item in the tree.

Extensional classifications are manipulated using drag’n’drop: items are just
dragged from any kind of Smalltalk tool (stand-alone or embedded in the
StarBrowser) and dropped at their desired location. That way extensional
classifications are used to group items of interest. The extensional classification
‘Favourites’ from Figure 5, for example, groups items we used while working
on the ServicesConfiguration class. It contains the Classifications bundle, the
ServicesConfiguration class, two methods we were frequently editing at the
time of taking the screenshot, the SUnit class with the unit tests for the
class, and an instance of ServicesConfiguration so that we could directly test
new implementations. Keeping all these items together helps to reduce the
complexity of the development process.

11

Fig. 6. StarBrowser showing the Advance UML Editor on the Popular Classes classi-
fication. This shows how the results from one specialised tool (SmallBrother) can be
used by another one (Advance) by integrating them using the classification model.

Besides being used for constructing working views on a system, classifications
are also used as working contexts for some widely used commands. For ex-
ample, the senders or implementers of a method can be looked for within the
context of a classification.

5.1 Advance and SmallBrother in the StarBrowser

As shown in Section 4, we integrated the Advance UML tool in the classifica-
tion model. The reason for doing so was that we could show a class diagram
for any kind of item that gets selected in the classifications tree. For example,
selecting a namespace shows a class diagram for all the classes in this names-
pace. Or showing a classification shows all the classes in that classification.

We also integrated SmallBrother , so that we could add the history information
as classifications in the tree. We decided to use intentional classifications that
calculate their items by querying the MethodHistory instance, as shown in
Section 4. However, we wanted this classification to refresh itself whenever the
user browses a method. So we made a subclass (called ObservingClassification)
that observes models using the VisualWorks dependency mechanism. Since
MethodHistory is a model, it can be observed by an ObservingClassification
and it will refresh when needed.

Once the service for Advance is selected as the current editor, and we have
added one of the classifications that wraps SmallBrother , the tools are effec-

12

tively integrated. Figure 6 shows an Advance diagram of the Popular Classes
classification. Of course this means that Advance can be used to display class
diagrams on all kinds of items, and that lots of other tools can take advantage
of this.

5.2 Other Tools

We showed how we integrated two external tools, Advance and SmallBrother ,
in the StarBrowser. Besides these tools, other tools were integrated in the
StarBrowser (by us or by independent parties):

• CodeCrawler [7] is a language independent tool that combines software vi-
sualization and software metrics to help with the understanding of software
systems. We also integrated a tool that shows class blueprints [8] (visualising
the internals of classes) whenever items containing classes are edited.

• Conan [1] is a tool that supports concept analysis (a technique to group
different objects with common relationships) in the context of reengineering
of software systems. The StarBrowser is used to browse the concepts and
elements found by Conan.

• Intentional Software Views offer a simple, intuitive and lightweight model
that facilitates software understanding and maintenance. The model is im-
plemented in a logic programming language. To shield the developers from
the implementation details or syntactic peculiarities that this implies, an
intuitive user interface was developed using the StarBrowser [9] .

• Soul is a logic programming language living in symbiosis with its imple-
mentation language (Smalltalk). The novel way of integrating these two
languages from different paradigms allows one to write logic programs that
can do full logic reasoning on and using objects [11]. The StarBrowser was
extended with support for showing the results of Soul queries as classifica-
tions, and work is in progress to integrate the Soul predicates browser in
the StarBrowser as well.

• Pictures. Another extension integrates a picture viewer in the StarBrowser
that shows pictures graphically when they are selected. This is useful for
keeping graphical information in your work context, or when making pre-
sentations.

• SUnit is the Unit testing tool in Smalltalk. Using the StarBrowser, an ad-
vanced GUI for SUnit is being built to ameliorate the built-in platform-
independent tool.

13

6 Discussion

This section we discuss the porting of the StarBrowser to a completely different
Smalltalk enviroment (the Squeak environment), and then how the Smalltalk
mechanism of class extensions is essential in the implementation of the classi-
fication model.

6.1 The Squeak Port

The VisualWorks implementation was ported to a second Smalltalk environ-
ment, the open-source Squeak 3 system [6]. After doing an initial port, con-
taining the model and a very simple browser, the Squeak version was taken
over by another developer, Ned Konz. In a couple of days, Ned had signif-
icantly extended our initial crude implementation to a level where it nearly
provided the same functionality as the VisualWorks version. Afterwards sup-
port was added for Squeak-specific items like Morphs, SqueakMap entries and
DVS packages, and tools like an e-mail browser. This is an indication of the
ease with which the lightweight classification model can be put to good use
even by developers who did not know the model before.

6.2 Packaging using Method Additions

As explained before, we identified three different actors that play a role when
integrating tools: the tool builder, the tool integrator and the model builder.
In order to support this separation in practice, it is absolutely necessary that
each actor can package its own code separately. Hence the tool integration
package has to be a separate entity that customises the classification model.

However, customisations of the classification model to support new kinds of
items depend on adding methods to existing Service classes. For example,
Figure 3 showed that the customisation of the classification model to support
methods is done by adding three methods to existing classes. Hence we need
a packaging mechanism that allows us to create a package for these methods.

Smalltalk has a package mechanism that supports method additions. A method
addition is a method that is defined in a package, but that belongs to a class
that is not defined in that package 4 . In other words, it is a method that can

3 See http://www.squeak.org/ for information and downloads.
4 In VisualWorks we use parcels or bundles and packages. In Squeak we use change-
sets. They all support class extensions.

14

be loaded into a system to extend some existing class, and is exactly what we
need to support the packaging customisations of the classification model.

When a language does not support method additions (such as for example
C++ or Java), the design of the classification model becomes much more
complicated. The visitor pattern used for the services then has to be replaced
by a design that allows customisations to be made purely by subclassing or
delegation.

7 Related Work

Conceptually, the classification model is a direct descendant of the software
classification model [5]. The main difference is that the classification model
uses a visitor to represent the actions that can be performed on items, which
did not exist in the software classification model. As a result, it is easier to
add operations, and services can be changed on the fly.

A lot of environments offer integration features that tools can use to integrate
with the environments and/or each other. For example, the Microsoft Manage-
ment Console (MMC) 5 integrates management tools in Windows. The tools
have to be developed as snap-ins, and cannot work as stand-alone applica-
tions. Another example is Chandler 6 , a tool to let users store and organise
diverse kinds of information (like e-mails, news, or mp3 files). It is set up as
an extensible platform, where users can contribute so-called parcels. Parcels
are python scripts that can use the facilities of Chandler. The major difference
with the approach taken by these environments and our approach is that they
support anticipated integration, and that the tool developers have to make
their tools compliant to the architecture, not the tool integrators.

Regarding unanticipated tool integration, not much work seems to have been
done. Apart from the Eclipse IDE [3], we are not aware of another model
that supports unanticipated tool integration that does not require the tool
developers themselves to make changes.

The Eclipse environment follows the same concept as the StarBrowser. It
consists of a tiny core (the plug-in loader), with most of the environment con-
tributed by plug-ins. For example, the Eclipse IDE and the Java Development
Environment together consist of around 60 large plug-ins. Plug-ins for Eclipse
have to conform to certain interfaces, and are glued together through exten-
sion points. These extension points are basically observers, and plug-ins are

5 http://www.microsoft.com/technet/treeview/default.asp?url=/technet/prod-
technol/winxppro/proddocs/sag MMCConcepts0 0.asp
6 http://www.osafoundation.org/Chandler Compelling Vision.htm

15

thus integrated using a synchronous message passing model. This differs a bit
from the StarBrowser and the classification model, where items and services
are used, and class extensions allow for the customisation. While intrinsically
there is thus not much difference between the two, in practice it is much easier
to customise the classification model than to write a Eclipse plug-in. The rea-
son is that much more coding is needed to implement extension points, because
the events have to be implemented in such a way that they are not blocked, do
not lead to errors, etc. In the classification model, the customisation is much
simpler.

8 Conclusion

This paper tackled the problem of unanticipated integration of tools, where
tools that were not designed to cooperate should be integrated. To solve this
problem, the paper presented the classification model and showed how this
model can be used for unanticipated tool integration. The advantages of the
classification model are that it is lightweight, which make it easy to extend,
and that the integration does not need to modify the tools themselves. This is
achieved by ‘glue code’ that sits between the tools and expresses the mapping
to and from items, the foundation of the classification model.

We showed the Smalltalk implementation of the classification model and its
major client, the StarBrowser, an extensible browser that integrates different
tools. By means of concrete examples we showed how the StarBrowser uses
the classification model to integrate with existing Smalltalk development tools
and third party tools like the Advance UML tool or the SmallBrother coding
assistant.

Acknowledgments

We gratefully acknowledge the financial support of the Swiss National Sci-
ence Foundation for the projects “Tools and Techniques for Decomposing and
Composing Software” (SNF Project No. 2000-067855.02) and “Recast: Evolu-
tion of Object-Oriented Applications” (SNF 2000-061655.00/1). We also like
to thank Koen De Hondt for valuable comments on classifications in general
and on this paper in particular, and the StarBrowser users for their comments
and support.

16

References

[1] Gabriela Arévalo. Understanding behavioral dependencies in class hierarchies
using concept analysis. In LMO 03: Langages et Modeles a Objets. Hermes,
2003.

[2] Visualworks application developer’s guide, 2002. Cincom.

[3] Eclipse Platform: Technical Overview, 2003.
http://www.eclipse.org/whitepapers/eclipse-overview.pdf.

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design
Patterns. Addison Wesley, Reading, Mass., 1995.

[5] Koen De Hondt. A Novel Approach to Architectural Recovery in Evolving
Object-Oriented Systems. Ph.D. thesis, Vrije Universiteit Brussel,Departement
of Computer Science, Brussels - Belgium, December 1998.

[6] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back
to the future: The story of Squeak, A practical Smalltalk written in itself. In
Proceedings OOPSLA ’97, pages 318–326, November 1997.

[7] Michele Lanza. Codecrawler - lessons learned in building a software visualization
tool. In Proceedings of CSMR 2003, page to be published. IEEE Press, 2003.

[8] Michele Lanza and Stéphane Ducasse. A categorization of classes based on the
visualization of their internal structure: the class blueprint. In Proceedings of
OOPSLA 2001, pages 300–311, 2001.

[9] Kim Mens, Tom Mens, and Michel Wermelinger. Maintaining software through
intentional source-code views. In Proc. of SEKE 2002, pages 289–296. ACM
Press, 2002.

[10] Don Roberts, John Brant, and Ralph E. Johnson. A refactoring tool for
Smalltalk. Theory and Practice of Object Systems (TAPOS), 3(4):253–263,
1997.

[11] Roel Wuyts. A Logic Meta-Programming Approach to Support the Co-Evolution
of Object-Oriented Design and Implementation. PhD thesis, Vrije Universiteit
Brussel, 2001.

17

	Introduction
	The Classification Model
	Overview
	Design Rationale

	Customising the Classification Model
	Adding New Services
	Supporting Custom Items

	Unanticipated Tool Integration
	Integration Overview
	Example: Integrating Advance and SmallBrother

	The StarBrowser
	Advance and SmallBrother in the StarBrowser
	Other Tools

	Discussion
	The Squeak Port
	Packaging using Method Additions

	Related Work
	Conclusion
	References

