Metaclass Composition Using
Mixin-Based Inheritance

Noury Bouraqadi

bouragadi@ensm-douai.fr
http://csl.ensm-douai.fr/noury
Ecole des Mines de Douai - France

Abstract

In the context of meta-programming and reflective languages, classes can be treated
as full fledged objects which are instances of other classes named metaclasses. Meta-
classes have proved to be useful for defining new class properties. Examples of such
properties are lazy memory allocation, multiple inheritance, having a single in-
stance. .. A class with some property can be obtained by instantiating a metaclass
which implements the desired property. However, instantiation allows assigning to
a class only properties defined by a single metaclass. A composition mechanism
is needed in order to reuse properties defined by different metaclasses and assign
them to a given class. This composition should be performed without breaking class-
metaclass compatibility. The compatibility issue arises when a class is coupled to its
metaclass. So, when composing metaclasses, we need to take care of such coupling
in order to avoid run-time exceptions.

In this paper, we explore the use of mizin-based inheritance to perform metaclass
composition. Mixin-based inheritance is an interesting alternative to both single and
multiple inheritance. As opposite to single inheritance, it allows code reuse among
different class hierarchies. Contrary to multiple inheritance, it allows developers to
explicitly specify the desired behavior through explicit linearisation. Our proposal
is to define and compose reusable class properties by introducing mixins at the
metaclass level. We demonstrate that this introduction can be done efficiently and
without altering compatibility.

Key words: Mixin, Metaclass, Class Property, Reuse, Composition, Compatibility

1 Compatibility and Metaclass Composition

Metaclasses (i.e. classes which instances are also classes) have proved to be
useful [1]]2][3][4][5][6][7]. One of their main advantages we focus on here is

Preprint submitted to Elsevier Science 7 July 2003

that they allow the definition of new class properties. Where a class property
represents a class specific behavior such as being abstract, having a unique
instance, following a specific inheritance schema, etc. ..

MetaA c—foo
? MetaB self new i-bar
c—bar ~

\
|
|
| o
instance ! of : MetaA j inherits from 7, o
| c—foo &
! I
|
|

I
I
I
A inherits from B . !
; < instance | of !
I
I
I
I
I

i—-foo e

i-foo j A
B
self class c—bar : r)
i—bar .

Fig. 1. Examples Where Class-Metaclass Compatibility is Required

Developers can make use of explicit metaclasses to build new kinds of classes.
However, they should be aware of the compatibility issue [8][9]. This problem
occurs when there is an implicit coupling of a class and its metaclass. To
explain this coupling consider the left most drawing of figure 1. The A class
provides an instance method i-foo that send some message c-bar to the class of
the receiver. Put another way, the i-foo instance method makes the assumption
that the class of the receiver understands the c-bar message. This assumption
is true for A, since its metaclass AMeta implements a c-bar method. But, now
look at B subclass of A. It inherits the i-foo instance method. To make i-foo
still run smoothly we need to guarantee that B understands the c-bar message.
So, in order to avoid a run-time exception (message not understood) we need
to ensure that BMeta (i.e. the metaclass of B) is compatible with AMeta and
provides somehow a c-bar method.

A symmetric issue arises when a class method makes an assumption about
instance behavior. An example illustrating this problem is given by the right
most drawing of figure 1. The AMeta metaclass implements a method c-foo
that sends a message i-bar to a new instance. This method works fine for the
A class (instance of AMeta) which provides the i-bar instance method. But,
c-foo may lead to a run-time exception for B (instance of BMeta) which does
not provide the i-bar instance method.

In order to ensure compatibility, metaclasses should be organized in such a
way to comply with the model we introduced in [9] and which is depicted by
figure 2. This model has two layers of metaclasses: compatibility metaclasses
and property metaclasses. Each class is the unique instance of a property meta-
class. This metaclass holds class specific properties, i.e. properties that are not
propagated to subclasses. Class methods that are involved in class-metaclass

4 inheritsfrom | gcompativilityMeta |
e |
O 1

1 Compatibility Metaclasses

|
|
|
APropertyMeta BPropertyMeta H
- P———— i ProreryMetadass
T Mo
! |
instance ! of |
! |
|
A |
P s
i—bar

Fig. 2. The Compatibility Model

couplings should be defined in compatibility metaclasses. These latters are
organized in an inheritance hierarchy parallel to the class hierarchy.

Another issue that meta-programmers quickly face is the need to compose
metaclasses. This composition is required in order to assign different proper-
ties to a given class. Assigning properties to classes is achieved by means of
instantiation. A class with some property can be obtained by instantiating
the metaclass which provides the desired properties. But, instantiation is not
enough when we want to reuse properties provided by different metaclasses.
Besides instantiation, an extra mechanism is needed to compose and hence
reuse existing metaclasses.

Since metaclasses are classes, they can be composed using inheritance. Ap-
proaches to perform inheritance can be splited into two main families: single
inheritance and multiple inheritance [10]. None of those two families is to-
tally satisfactory. Single inheritance does not allow code reuse among meta-
classes belonging to different hierarchies. And, multiple inheritance can lead
to undesirable behavior because of complex linearisation algorithms for auto-
matic conflicts resolution. In order to avoid these two limitations, one possi-
ble solution is to use Mizin-based inheritance [11][12]. A mixin is a subclass
parametrized by its unique superclass. The superclass of a mixin varies accord-
ing to the hierarchy where the mixin is reused. Different mixins used in some
hierarchy should be explicitly ordered by developers. This ordering can be
viewed as an explicit linearisation that helps solving possible conflicts among
composed mixins.

In this article we explore the use of mixins to support metaclass composition.
First, section 2 presents mixin-based inheritance. Then, section 3 shows that
mixins can be used at the metaclass level to define reusable class properties.
Section 4 describes the introduction of mixin-based inheritance within the
compatibility model. Next, in section 5 multiple inheritance of mixins is used
to compose metaclasses and hence assign different properties to a single class.

In section 6, an overview of the three metaclasses used for implementing mixin-
based inheritance is given. Section 7 provides a comparison with related works.
Last, the paper ends with some concluding remarks, after sketching future
work (section 8).

2 Mixin-Based Inheritance

According to Bracha and Cook [11], “A mizin is an abstract subclass that may
be used to specialize the behavior of a variety of parent classes’. It means that
a mixin is a class parametrized by its superclass. Developers may choose to
use a same mixin in unrelated inheritance hierarchies. So, the superclass of a
mixin varies according to the hierarchy where the mixin is used.

We use mixins in the same way they are used in CLOS [13], i.e. to achieve
multiple inheritance. A class can inherit from different superclasses (mixins
and plain classes). However, in CLOS mixin-based inheritance is just a pro-
gramming style. We propose to use a constrainted model where only multiple
inheritance of mixins is permitted. While a class can inherit from an arbitrary
number of mixins, it should have at most one non-mixin superclass. More-
over, mixins direct superclasses precede non-mixins direct superclasses in the
linearisation list.

M1 <<mixin>> M2 <<mixin>> A A subclass: #B
instanceVariableNames: 'u v’
L'l L,l Z> classVariableNames: ”
1 2 3 poolDictionaries: ”
‘ ‘ category: 'Mixins—Example’
metaclass: CompositeClass.
B mixins: {M1. M2}

M3 <<mixin>> B

B subclass: #C
Z'L Z,L instanceVariableNames: 'w’
2
|

1 classVariableNames: ”
‘ poolDictionaries: ”
‘ ‘ category: 'Mixins—Example’
metaclass: CompositeClass.
c C mixins: {M3}

Fig. 3. An Inheritance Hierarchy With Mixins

For example, consider the hierarchy depicted by figure 3. As stated in the
definition provided by the rightmost part of figure 3, class B is a subclass of
class A and inherits from mixins M1 and M2 in this order. Because of the
provided mixins order, and because we privilege mixins over non-mixins, the
result of linearising B superclasses is:

{M1. M2. A}

This list gives the order of traversing superclasses of B on method lookup. It
shows that methods defined by M2 override methods with the same selector !
defined by A. And methods defined by M1 override methods of both M2 and
A. Also, if there is a message sent to super within M2, method lookup will
start at A. While lookup on a message sent to super within M1 will start at
M2.

Now, look at class C. It inherits from the M3 mixin and from B. Linearisation
of superclasses of C leads to the following list:

{M3. B. M1. M2. A}

Note that result of linearisation of superclasses of B is in the tail of this list. So,
the intent of the implementor of B is not altered. Also, note that the order of
superclasses in a linearisation list is the one given by developers when defining
subclasses. So, there is no possible ambiguity.

Last, we should point that the inheritance model we use forbids having two
instances variables? with the same name. So, the creation of a subclass that
inherits from two superclasses® that provide two homonym instance variables

is forbidden.

3 Class Properties Reuse Using Mixins

In this section we show how to reuse class properties by means of mixins at
the metaclass level. We illustrate this reuse with an example based on the
Smalltalk Boolean class and its subclasses True and False. When studying the
code of this hierarchy, one can identify at least two class properties: abstract
and singleton. The Boolean class is abstract since it relies on its subclasses
to provide concrete definitions for some methods. The two subclasses True
and False are concrete. But, each of them should not have more than a single
instance.

We implemented the above mentioned class properties using two mixins: Ab-
stract and Singleton. We use this mixins in order to enforce properties of classes
belonging to the Boolean hierarchy. This enforcement is achieved by making
BooleanMeta, TrueMeta and FalseMeta inherit from the appropriate mixins
(see figure 4). It worth noting that, Singleton is reused twice as a superclass
of both TrueMeta and FalseMeta. More generally, by implementing class prop-
erties using mixins, we can reuse them in unrelated metaclass hierarchies.

1 i.e. signature.

2 je. fields.

3 Two mixins, or a mixin and a non-mixin, or the same mixin twice.

Boolean

instance of

BooleanMeta

inherits from

False FalseMeta

%>

True

TrueMeta

Fig. 4. Enforcing Class Properties of the Boolean Hierarchy Using Mixins

Abstract
<<mixin>>

new

Singleton
<<mixin>>

singleton

new
uniguelnstance
setupSingleton

(1) Mixin named: #Abstract

(2) instanceVariableNames: "

(3) category: 'MetaclassTalk-Mixin Library'.

(4)

(5) new

(6) self error: 'Abstract class should not be instantiated’

Fig. 5.

Figure 5 provides the code for the Abstract mixin that define the “abstract”
class property. Lines 1 to 3 build the mixin by instantiating the Mixin class.
This code is what actually developers write when building the mixin. It is also
what is shown within a browser when displaying the Abstract mixin definition.
The new mixin holds no instance variables and defines the new method (lines 5
to 6). This latter raises an exception and hence forbids the creation of new

instances.

Implementation of the Abstract Class Property Using a Mixin

Mixin named: #Singleton
instanceVariableNames: 'singleton’
category: 'MetaclassTalk-Mixin Library’.

self error: 'Please retrieve my sole instance using the uniquelnstance message.’

uniquelnstance
singleton ifNil: [self setupSingleton].
Tsingleton

setupSingleton
self instanceCount = 0
ifTrue: [singleton := super new|
ifFalse: [singleton := self somelnstance]

Fig. 6. Implementation of the Singleton Class Property Using a Mixin

Figure 6 provides the code for the Singleton mixin that define the singleton
class property. Lines 1 to 3 build the mixin and provide it with an instance
variable necessary for the storage of the sole instance. Then, the mixin is
provided a definition of the new method that raises an exception (lines 5
and 6). This is because the unique instance should be retrieved using the
message uniquelnstance. The singleton instance variable is setup using the
setupSingleton method (lines 12 to 15). This method creates a new instance
only if no one is already available. Since Singleton is a mixin, its superclass
varies according to the hierarchy where it is used. As a result, for a given
message sent to super, the class where method lookup starts varies according
to the hierarchy where the mixin is used. This is the case for the message new
which is sent to super within the setupSingleton method.

4 Mixins and Class-Metaclass Compatibility

In the previous section, we didn’t show relationships between metaclasses of
the boolean hierarchy for sake of simplicity. However, as described in section 1,
we must ensure compatibility by adhering to the model introduced in [9].
Figure 7 shows the boolean hierarchy refactored to comply with this model.
For each class we have two metaclasses: a compatibility metaclass that ensure
compatibility, and a property metaclass that provide class specific properties.
Property metaclasses inherit both from compatibility metaclasses and from
mixins that implement class properties.

Abstract BooleanCompatibilityMeta
<<mixin>>

new

AN

‘1 ‘2 Singleton

<<mixin>>

Boolean |- ___ > | BooleanPropertyMeta

singleton

new
uniquelnstance
setupSingleton

inherits from % Z}
T
2 1

FalseCompatibilityMeta TrueCompatibilityMeta

FalsePropertyMeta 1 2

) \ \
True oo __________ instance 9f7 - - —>| TruePropertyMeta

Fig. 7. Ensuring Compatibility for the Boolean Hierarchy

Based on linearisations lists of metaclasses of the Boolean hierarchy (see fig-
ure 8), we can see that the introduction of mixin-based does alter compati-
bility. Indeed, the compatibility metaclasses hierarchy remains parallel to the

class one. In the linearisation list for the metaclass hierarchy of True, True-
CompatibilityMeta appears right before BooleanCompatibilityMeta. Similarly,
in the linearisation of the metaclass hierarchy of False, FalseCompatibilityMeta
appears right before BooleanCompatibilityMeta.

Classes Metaclasses Linearisation Lists

Boolean {BooleanPropertyMeta. Abstract. BooleanCompatibilityMeta}

True {TruePropertyMeta. Singleton. TrueCompatibilityMeta. BooleanCompatibilityMeta}

False {FalsePropertyMeta. Singleton. FalseCompatibilityMeta. BooleanCompatibilityMeta}

Fig. 8. Linearisation Lists for Metaclasses of the Boolean Hierarchy

The use of mixins does still allow assigning specific properties to classes. In-
deed, making property metaclasses inherit from mixins does not introduce any
unwanted class properties propagation. In our example, the Abstract mixin ap-
pears only in the linearisation list for the metaclass of Boolean. Thus, while
the abstractness of Boolean is enforced, True and False remain concrete.

5 Class Properties Composition Using Mixins

Thanks to multiple inheritance of mixins, it is possible to assign many prop-
erties to a given class. To illustrate this idea, consider the True class. Besides
having a unique instance, True is a final class. That is, True should not be
subclassed.

Singletons Final TrueCompatibilityMeta
<<mixin>> <<mixin>>

singleton subclass:...

new

uniquelnstance
setupSingleton

1 ‘2 inherits from 3
instance of

True |- T >| TruePropertyMeta

Fig. 9. Class Properties Composition Using Mixin Composition

The property of being final can be implemented using a mixin we name Final.
Making True both final and singleton is achieved by making TruePropertyMeta
inherit from the two mixins Singleton and Final as shown in figure 9. This is
done by including the following expression into the definition of TrueProper-
tyMeta:

TruePropertyMeta mixins: {Singleton. Final}

Based on our mixin-based inheritance model rules, the linearisation list of
direct superclasses of TruePropertyMeta is the following:

{Singleton. Final. TrueCompatibilityMeta}

Mixins appear in the order provided in the definition of TruePropertyMeta, and
the non-mixin direct superclass appears after the mixin superclasses. In this
example, metaclasses corresponding to the composed class properties (Single-
ton and Final) are orthogonal. So, no conflict arises when composing them.
However, in case of conflicts, mixin-based inheritance rules apply. Two class
properties which implementation (i.e. the corresponding mixin metaclasses)
make use of homonym instance variables can not be assigned to a same class.
An attempt to perform a such assignment fails. But, one can assign proper-
ties which implementation provide methods with same selectors. Indeed, such
conflicts are automatically solved using method overriding. Methods defined
by a mixin are overridden by methods held by mixins appearing first in the
definition a metaclass.

6 Implementation

We implemented the mixin model described in section 2 within Metaclass Talk*
a reflective extension of Smalltalk [16][17]. MetaclassTalk extends Smalltalk
in two main directions. First, MetaclassTalk provides explicit metaclasses ® .
The creation and the instantiation of explicit metaclasses can be performed
in the same way as for plain classes. Second, MetaclassTalk provides a MOP
(Meta-Object Protocol [18]) that allow changing the language semantics (e.g.
message dispatch, read/writes of instance variables). In the following, we fo-
cus on the metaclass support which is the only feature used for implementing

mixin-based inheritance.

6.1 Implementation Through Class Generation

Conceptually, mixin-based inheritance introduced in section 2 is a kind of
multiple inheritance. However, the implementation fully relies on single inher-
itance. The result of the linearisation corresponds to the actual inheritance
hierarchy.

4 The current implementation of MetaclassTalk have been developed with the open
source Smalltalk named Squeak [14][15]. It can be downloaded at http://csl.ensm-
douai.fr/MetaclassTalk

® Smalltalk metaclasses are implicit: they are anonymous and automatically han-
dled by the system.

The link between multiple inheritance and single inheritance is done by view-
ing mixins as subclass builders, as suggested by Bracha et al. [19]. A mixin
takes a class as input and produces a subclass of the given class. The new sub-
class will include instance variables and methods which definitions are held
by the mixin. A such subclass is implicit. It is not directly available to devel-
opers, and does not appear in class browsers. Then, developers only deal with
mixins.

e
S | GM1 GM2 | @ C s_ubclass: #S.
instanceVariableNames: 'w’

w : X z i v .
> y > J_{> classVariableNames: ”

mB mE | mA ... -

mc | ma | me pooIchtl.o?a_m‘es. ’
: | mB ! mD category: Mlxms—E).(ampIe
| mE I metaclass: CompositeClass.
\.Z.C.Z.Z._. _Generated Classes, S mixins: {M1. M2}

Fig. 10. The Actual Inheritance Hierarchy of a Class S inheriting from Two Mixins
M1 and M2

Figure 10 gives the actual inheritance hierarchy of a class S inheriting from a
non-mixin superclass C and from two mixins M1 and M2. Each mixin generates
a new implicit class that is inserted between S and C. In figure 10 names of
generated classes are prefixed with “G”. The order in which mixins are listed
in the definition of S is important. It gives the ordering of generated classes
into the inheritance hierarchy. In our example, the M1 mixin appears before
the M2 mixin in the definition of S. Then, the GM1 class generated by M1 is
a subclass of the GM2 class generated by M2.

6.2 Explicit Metaclasses Used for Implementation

We implemented mixin-based inheritance using three explicit metaclasses:

e Mixin: describes mixins.

e CompositeClass: describes classes which inherit “conceptually” from multiple
mixins.

e GeneratedClass: describes implicit classes built and maintained by mixins.

Mixin: Because we view mixins as a special kind of classes, we describe them
using the Mixin metaclass. We found that this choice eases the use of mixins
since we can reuse all tools available for classes (Browsers, senders/implementors
of methods, ...). So, using a browser, one can define a mixin within some
category, comment the mixin or implement the mixin’s methods. The set of
instances of Mixin includes metaclasses that implement class properties such
as Abstract or Singleton. Such (meta)classes hold definitions of instances vari-
ables and method to copy into generated classes. They also holds references on
generated classes to update them whenever a change occurs (e.g. on methods

10

additions or removals).

CompositeClass: A composite class is a class that conceptually can have
many superclasses. This is the case of property metaclasses. It is the responsi-
bility of a composite class to enforce mixin-based inheritance rules. It forbids
the inheritance from more than one non-mixin superclass or from two super-
classes that hold homonym instance variables. The inheritance from mixins is
materialized as a protocol for adding and removing mixins. When adding or
removing mixins, the composite inserts or removes from its actual inheritance
hierarchy classes generated by mixins.

GeneratedClass: A generated class is an implicit class built by some mixin.
It has the responsibility of computing its class format. The class format is
used by the Smalltalk virtual machine to determine the number of memory
bytes to allocate for a new object. The computation of a class format takes
into account the number of all instance variables of a class, including inherited
ones. Each generated class has the responsibility to recompute its class format
whenever its structure changes (e.g. removal of a superclass, addition of an
instance variable,...). Generated classes have also the responsibility to hold
copies of methods of the mixin responsible of the generation. Although it
results in some space overhead, the decision to make copies of methods has
important benefits for efficiency. Since methods can include messages sent to
super, we need to compute the context of the method in order to perform
the dispatch of such messages. By copying methods and because generated
classes are arranged in a single inheritance tree, this computation can be done
at compile time. Moreover, we can rely on the default mechanism for method
lookup provided by the Smalltalk virtual machine. Therefore, the use of mixin-
based inheritance does not alter the execution performance.

7 Related Works

Most programming languages providing metaclasses ensure compatibility with-
out allowing having class specific properties. This is the case of CLOS [13],
Smalltalk [20], and SOM [3][7].

By default, CLOS ensures that each class and all its subclasses are instances
of a same metaclass. While this constraint ensures compatibility, it forbids
assigning specific properties to classes. However, CLOS allows changing this
policy in order to use any metaclass. But, then no support is provided for
compatibility.

As opposite to CLOS, Smalltalk allows assigning properties to classes while
still ensuring compatibility. Indeed, the system ensures compatibility by orga-

11

nizing metaclasses into an inheritance hierarchy parallel to the class one. Al-
though developers can not link a class to some specific metaclass, they can add
instance variables and methods to metaclasses in order to define class prop-
erties. However, the parallel inheritance hierarchies lead to unwanted prop-
agation of class properties. For example, subclasses of an abstract class will
implicitly become abstract. Besides, single inheritance forbids reusing class
properties across inheritance hierarchies.

The SOM system does not suffer from this latter limitation since it relies on
multiple inheritance for reusing and composing class properties. Developers
are allowed to select the M metaclass to use for creating S, a subclass of an
existing C class. In order to ensure compatibility, SOM generates® a new
metaclass, called derived metaclass, that inherits from M and from the meta-
class of C. The new class S is created by instantiating the derived metaclass.
This use of multiple inheritance allows reusing class properties in unrelated
metaclass hierarchies. However, this solution propagates superclass properties
to subclasses, and does not fully ensure compatibility [9].

NeoClassTalk has been the first language to support class properties reuse
and composition, while ensuring compatibility [9]. Class properties are stored
in the form of strings. Whenever a class property is needed, a metaclass is
built from the appropriate string. This approach has two drawbacks. On the
one hand, it is ad hoc. And on the other hand, definitions of class properties
are not compiled. Therefore, syntactic bugs (e.g. missing period, parenthesis
mismatch) can not be easily detected and fixed. Our solution based on the
use of mixins avoids these two drawbacks. Mixin-based inheritance is a gen-
eral purpose solution that work at both the class and the metaclass levels.
And, since mixins are treated as full fledged classes, the code they provide is
compiled before use.

A possible alternative to mixins is to use traits at the metaclass level. Roughly,
a Trait [21] is an entity that hold a set of methods and allow reusing them
in different class hierarchies. This exported behavior may be parametrized
through a specified set of required methods. From the composition point of
view, the trait model provides developers with a fine control over composition
and conflict resolution. While mixin-based inheritance allows explicit ordering
of mixins, traits composition goes down to the method level. Different opera-
tions (aliasing, exclusion,. ..) are possible for composing methods provided by
different traits and hence solving conflicts. However, traits do not allow state
reuse, since they do not hold instance variables. While this characteristic eases
composition, it also restricts reuse opportunities to method definitions. A class
property which definition requires one or more instance variables can not be

6 This generation is performed only when the M metaclass does not inherit from
the metaclass of C.

12

fully defined using traits. So, from this point of view mixins are superior to
traits.

8 Future Work

A first important work we are currently conducting is to allow mixin compo-
sition even in case of conflicts due to instances variables. Such conflicts arise
on repeated inheritance from a same mixin, or when different mixins provide
instance variables with a same name. Our goal is to allow developers decide
about the appropriate action to perform. Candidate actions are:

e reject the composition,
e merge conflicting instance variables,
e accept duplication.

Besides improving instance variable composition, we aim at borrowing the
interesting ideas provided by the traits model [21]. As we saw in section 7
the traits model is superior to mixins for the point of view of mixin compo-
sition. However, mixins allow state reuse (i.e. instance variables) while this is
not possible using traits. We are currently exploring a solution which merges
advantages of both traits and mixins.

Another direction of investigation is to generalize the use of mixins. Instead
of having both concepts of classes and mixins, we would like to only have
mixins. Developers will only build and compose mixins. We plan to study the
feasibility of this approach and its consequences on building large libraries.
We plan to use Smalltalk for experimenting the generalization of mixin use.
In this context, we need to deal with an extra issue: providing support for
class variables, pool dictionaries.

Yet another work of high interest is the integration of mixins within the
Smalltalk kernel. This integration will lead to the bootstrapping of our im-
plementation. Indeed, our current implementation of mixin-based inheritance
relies on three metaclasses. These latters are not mixins although they repre-
sent three different class properties.

9 Conclusion

In this paper, we presented an approach for defining reusable and composable
class properties. Our solution consists in introducing mixin-based inheritance

13

at the metaclass level. Class properties are defined as mixins that can be
reused in different metaclass hierarchies.

We also showed that mixin-based inheritance can be used at the metaclass
level without altering compatibility. Our starting point was a model that takes
care of possible couplings between classes and metaclasses [9]. We described
how to make use of mixins within this model. Therefore, we can use mixin-
based inheritance to assign specific properties to classes while still ensuring
compatibility.

Experiments related to this research were conducted using MetaclassTalk a
reflective extension of Smalltalk. This extension introduces both explicit meta-
classes and extra reflective facilities. However, only explicit metaclasses were
necessary to support mixin-based inheritance. The resulting implementation
is very efficient: method lookup is equally fast with or without mixins.

Although we focused on metaclass composition and class properties reuse,
our implementation of mixin-based inheritance is general purpose. It can be
exploited for code reuse in any context and not only for metaclasses. We
plan to apply it to other contexts and particularly for refactoring large class
libraries.

Acknowledgements

The author thanks Houssam Fakih and Thomas Ledoux for their comments
on a draft version of this paper.

References

[1] J.-P. Briot, P. Cointe, Programming with Explicit Metaclasses in Smalltalk, in:
Proceedings of OOPSLA’89, ACM, New Orleans, Louisiana, USA, 1989, pp.
419-431.

[2] P. Cointe, The ClassTalk System: a Laboratory to Study Reflection in Smalltalk,
in: Informal Proceedings of the First Workshop on Reflection and Meta-Level
Architectures in Object-OrientedProgramming, OOPSLA/ECOOP’90, 1990.

[3] S. Danforth, I. R. Forman, Reflections on Metaclass Programming in SOM, in:
Proceedings of OOPSLA’94, 1994, pp. 440-452.

[4] I. R. Forman, M. H. Conner, S. Danforth, L. K. Raper, Release-to-Release
Binary Compatiblity in SOM, in: Proceedings of OOPSLA’95, 1995.

[5] T. Ledoux, P. Cointe, Explicit Metaclasses as a Tool for Improving the Design
of Class Libraries, in: Proceedings of ISOTAS’96, LNCS 1049, Springer-Verlag,
Kanazawa, Japan, 1996, pp. 38-55.

14

[6] M. N. Bouragadi-Saaddani, T. Ledoux, F. Rivard, P. Cointe, Providing explicit
metaclasses in smalltalk, in: OOPSLA’96 workshop : “Extending the Smalltalk
Language”, 1996.

[7] 1. R. Forman, S. H. Danforth, Putting Metaclasses to Work, Addison Wesley,
1998.

[8] N. Graube, Metaclass Compatibility, in: Proceeding of OOPSLA’89, New
Orleans, Louisiana, USA, 1989, pp. 305-315.

[9] N. Bouraqadi, T. Ledoux, F. Rivard, Safe Metaclass Programming, in:
Proceedings of OOPSLA’98, ACM, 1998.

[10] G. B. Singh, Single Versus Multiple Inheritance in Object Oriented
Programming, OOPS Messenger 6 (1) (1995) 30-39.

[11] G. Bracha, W. Cook, Mixin-based inheritance, in: N. Meyrowitz (Ed.),
Proceedings of ECOOP/OOPSLA’90, ACM Press, Ottawa, Canada, 1990, pp.
303-311.

[12] M. Flatt, S. Krishnamurthi, M. Felleisen, Classes and mixins, in: Conference
Record of POPL 98: The 25TH ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, San Diego, California, USA, 1998, pp.
171-183.

[13] S. E. Keene, Object-Oriented Programming in Common Lisp: A Programmer’s
Guide to CLOS, Addison-Wesley, Reading, Massachusetts, USA, 1989.

[14] D. Ingalls, T. Kaehler, J. Maloney, S. Wallace, A. Kay, Back to the Future.
The Story of Squeak, A Practical Smalltalk Written in Itself, in: Proceedings
of OOPSLA’97, ACM, Atlanta, Georgia, 1997, pp. 318-326.

[15] M. Guzdial, K. Rose (Eds.), Squeak: Open Personal Computing and
Multimedia, Prentice Hall, 2002.

[16] N. Bouragadi, T. Ledoux, Aspect-oriented programming using reflection, Tech.
Rep. 2002-10-3, Ecole des Mines de Douai (Oct. 2002).

[17] N. Bouragadi, T. Ledoux, Aspect-Oriented Software Development, Addison-
Wesley, 2003, Ch. Supporting AOP using Reflection, (to appear).

[18] G. Kiczales, J. des Rivires, D. G. Bobrow, The Art of the Metaobject Protocol,
MIT Press, 1991.

[19] G. Bracha, D. Griswold, Extending smalltalk with mixins, OOPSLA’96
workshop on Extending Smalltalk (October 1996).

[20] A. Goldberg, D. Robson, Smalltalk 80, Vol. The Language and its
implementation, Addison-Wesley, 1983.

[21] N. Schérli, S. Ducasse, O. Nierstrasz, A. Black, Traits: Composable units of
behavior, in: Proceedings ECOOP 2003, LNCS, Springer Verlag, 2003.

15

