
Induced Intentional Software Views

Tom Tourwé a Johan Brichau a,1 Andy Kellens a Kris Gybels a,1

aProgramming Technology Lab
Vrije Universiteit Brussel
Pleinlaan 2, 1050 Brussel

Belgium

Abstract

Evolving and maintaining software requires adequate documentation of its imple-
mentation. However, due to the software’s constant evolution, the documentation
and implementation do not remain synchronised. Intentional software views have
been proposed as a documentation technique to alleviate this problem. Creating
such views is not at all a trivial task, however. In this paper, we propose to use
a learning algorithm that derives such intentional software views from extensional
software views, which are much easier to build. The resulting approach combines the
advantages of intentional software views with the ease of constructing extensional
views.

1 Introduction

Maintaining and evolving software applications is a complex task, because
developers need to understand the software’s internal structure to ensure the
changes they apply do not break the intended program behaviour (van Gurp
and Bosch, 2001). However, this can only be ensured if the design structure
is adequately documented. Unfortunately, such documentation is often not
available. Even if it was carefully created in the initial development phase, it
often becomes outdated over time, because it is not updated when the software
evolves. This clearly complicates future evolutions of the software.

Email addresses: tom.tourwe@vub.ac.be (Tom Tourwé),
johan.brichau@vub.ac.be (Johan Brichau), akellens@vub.ac.be (Andy
Kellens), kris.gybels@vub.ac.be (Kris Gybels).
1 Research assistant of the Fund for Scientific Research, Flanders, Belgium
(F.W.O.)

Preprint submitted to Elsevier Science 3 July 2003



The major reason for documentation growing outdated is that the software’s
documentation and its implementation are completely separated. Currently,
the software’s structure is documented using various diagrams and models (Fowler
and Scott, 1999) that are in no way connected to the implementation. Conse-
quently, whenever developers change the implementation, they should remem-
ber to update the documentation. Although some documentation techniques
that are actively part of the development exist (e.g. SUnit (Beck, 1999)), they
also need to be updated manually after each change to the source code (Pipka,
2002).

Extensional (De Hondt, 1998) and intentional (Mens et al., 2002) software
views have been proposed as a way to alleviate this problem. Such views
are connected to the implementation and document important structures and
patterns (such as design patterns (Gamma et al., 1994)). Extensional views are
simple enumerations of artifacts belonging to a particular view. Unfortunately,
such extensional views are clearly not robust towards evolution. Intentional
views, on the other hand, are described by means of an intentional description
that computes the artifacts. As such, intentional views are very powerful,
but harder to construct, because a developer needs extensive knowledge of
the internal structure of the software to identify the intentional description.
Consequently, developers may prefer to use an extensional view.

In this paper, we propose an approach that combines the ease of use of exten-
sional views with the advantages of intentional views. To this extent, we use a
learning algorithm that automatically derives the intentional view correspond-
ing to an extensional one. Such induced software views relieve the developer
from the burden of expressing an intentional software view, while it produces
documentation that will be updated automatically after evolution.

In the following section, we explain the problem statement in more detail,
by discussing the disadvantanges of both extensional and intentional software
views. In section 3, we explain the learning algorithm we use to automatically
induce intentional software views. Section 4 discusses two experiments we con-
ducted using our approach, and shows the results. In section 5, we generalise
these results and analyse our approach. Section 6 discusses related work, while
section 7 concludes.

2 Detailed Problem Statement

This section clarifies the problem we want to tackle in this paper. This is
achieved by introducing extensional and intentional views, thereby discussing
both their advantages and disadvantages.

2



2.1 Extensional Software Views

Extensional views were introduced by De Hondt (De Hondt, 1998) as software
classifications. In essence, a view (or software classification) is a collection of
source code artifacts, such as classes, methods or variables. It be constructed
by manually adding artifacts to the view, possibly using some code investiga-
tion tools present in the development environment.

Such extensional views exhibit a number of important drawbacks, however,
that are all due to the lack of a computable description of the view:

• they are not robust towards evolution, because the view cannot be updated
automatically whenever the software changes. Just like ordinary software
documentation, the view may thus become outdated after a couple of evo-
lutions;

• they do not scale, because browsing the complete source code and manually
classifying artifacts is a time-consuming and error-prone process.

• they do not explicitly mention their underlying intention. A view merely
contains some artifacts, but does not explicitly expose the reason why these
belong together. Consequently, a developer is expected to discover this in-
tention manually. Naturally, the view may be documented, which provides
the developer with some hints of what to look for. This documentation may
however also become outdated, and is expressed in natural language, which
means it can be interpreted differently by different developers.

2.2 Intentional Software Views

Intentional views are an extension of the extensional views discussed above
and were first introduced by Mens (Mens et al., 2002). Contrary to extensional
views, that merely enumerate their items, intentional views provide a descrip-
tion of a set of source-code entities that belong to the view. The description
is intentional in the sense that the source-code entities in the view are not
explicitly enumerated. Instead, all entities belonging to the view are described
by means of an executable expression in some programming language. For ex-
ample, the StarBrowser (Wuyts, 2002) allows the developer to specify views by
means of Smalltalk expressions, whereas the Intentional View Browser (Mens
et al., 2002) uses logic programs instead.

Because an intentional view includes a computable description of its underly-
ing intention, it solves many, if not all, of the problems identified with exten-
sional views:

• they are more robust towards evolution, because the view can be recomputed

3



after the software has changed;
• they scale, because the artifacts are computed automatically, which is es-

sential when dealing with large-scale software systems;
• they explicitly describe the relation between all included artifacts in their

intention.

Despite these advantages, intentional views suffer from a number of other
problems:

• they are hard to define, since they require meta-programming skills from a
developer. Moreover, since their intention is specified in a Turing-complete
programming language, it is particularly prone to errors, as are all programs;

• they may include artifacts that do not form part of the view, because the
intention specified by the developer is too general. Conversely, the intention
may be to restrictive and the view may not include artifacts that should
be included. These problems can only be alleviated by the developer, who
should adapt the logic rules as appropriate;

• they require extensive knowledge about the software’s internal design. Be-
fore the intention can be specified, a developer needs to identify it. This
is far from a trivial task, however, since browsing a large set of method
implementations to reveal some common pattern is a time-sensitive and
error-prone process. Apart from this problem, a good rule for describing
the intention may not be immediately obvious from the source code and
a developer may thus even specify an incorrect rule. Moreover, intentional
views confront us with a chicken-and-egg problem: the view should allow
a developer to better understand the software, but constructing it already
requires a good understanding.

3 Induced Software Views

In this section, we introduce induced software views that combine the advan-
tages of both extensional and intentional views, as discussed above. We first
present a general overview of this approach. Then, we provide a short intro-
duction to inductive logic programming and logic metaprogramming, which
form crucial cornerstones of our approach.

3.1 General Overview

The approach we propose is actually a combination of the extensional and
intentional approach. The idea is that a developer manually classifies the ar-
tifacts he supposes belong together, and that the underlying intention (in the

4



form of the rule that expresses it) between these artifacts is discovered au-
tomatically. In this way, we actually combine the ease of use of extensional
views, the robustness towards evolution, the scalability and the explicit inten-
tion associated with intentional views. At the same time we reduce the major
problems associated with intentional views. Since we (try to) discover the in-
tention behind a view in an automatic way, we no longer require the developer
to have a deep understanding of the inner workings and structure of the soft-
ware. Moreover, the rules describing the intention of the view is computed
automatically, relieving the developer from the tedious task of writing the
program manually, and greatly reducing the risk of errors in the program. We
call these learned intentional software views induced software views. A sum-
mary of the comparison of extensional and intentional views versus induced
views is shown in table 1.

View Classification Reveals Intention Evolution Scalable

Extensional Enumeration No Not robust No

Intentional Metaprogram Yes Robust Yes

Induced Enumeration Yes Robust Yes
Table 1
A comparison of the different software views.

3.2 Inductive Logic Programming

In induced software views, the intention is identified by means of inductive
logic programming. This is a machine-learning technique that, given a set of
desired example solutions for a logic predicate, automatically induces rules for
that predicate. To derive the rules, an already established set of predicates,
called the background knowledge, is used. The technique aims to uncover some
general pattern in the examples, so that additional examples with the same
pattern would be covered by the rules as well. For example, given the follow-
ing set of examples and background knowledge, the inductive logic program
creates the following definition for the grandFather predicate 2 .

Examples Background knowledge Induced Logic Rules

grandFather(tom,bob). father(tom,peter). grandFather(?grandfather,?person) if

grandFather(tom,jim). father(tom,marie). father(?grandfather,?father),

grandFather(tom,ellen). father(peter,bob). father(?father,?person).

grandFather(tom,bart). father(peter,jim). grandFather(?grandfather,?person) if

mother(marie,ellen). father(?grandfather,?mother),

mother(marie,bart). mother(?mother,?person).

2 The variables in the induced logic rules have automatically generated names,
which we edited for readability.

5



This is achieved using a bottom-up technique (although other techniques ex-
ist (Mitchell, 1997)) that generalises a set of specific examples into a more
general rule. For example, given the two logic clauses grandFather(tom,bob) and
grandFather(tom,jim), the technique will automatically deduce the clause grand-

Father(tom,?x). Because each pair of logic clauses in the examples and the back-
ground knowledge is considered in this way, the technique is able to construct
a set of logic rules that matches all examples. Since this set of rules contains
a lot of redundant parts, a reduction is applied to obtain logic rules as shown
above. A discussion of this entire technique, which is called relative least gen-
eral generalisation is beyond the scope of this paper. We refer the interested
reader to (Mitchell, 1997).

3.3 Logic Metaprogramming

To use inductive logic programming techniques on software artifacts, we im-
plemented an inductive logic program in Soul (Wuyts, 1998, 2001). Soul is
a logic metaprogramming environment that is implemented on top of, and
tightly integrated with, the Smalltalk development environment. The essen-
tial distinguishing feature of Soul compared to other logic-based approaches
to reason about software (such as (Canfora and Cimitile, 1992)) is that all
entities in the object-oriented source code (i.e., classes, methods, variables,
inheritance relationships, . . . ) can be directly accessed from within the Soul
environment through a metalevel interface. Some of these predicates are shown
in table 2. The main advantage of this approach, as opposed to having a sep-
arate repository of logic facts extracted from the code, is that we will always
reason about the latest version of the source code, thus avoiding consistency
problems. The predicates defined in the metalevel interface will serve as the
background knowledge for inducing generalised logic rules.

Soul is a variant of Prolog (Deransart et al., 1996) with some minor syntactic
differences. Below we give an example of the syntax. The main differences with
Prolog are that logic variables are always preceded by a question mark (e.g.,
?P, ?C, ?D) and that the head and the body of a logic rule are separated by if,
instead of :-.

classInHierarchyOf(?C,?P) if subclassOf(?C,?P).

classInHierarchyOf(?C,?P) if subclassOf(?C,?D), classInHierarchyOf(?D,?P)

The logic rules above simply state that a class ?P is an ancestor of a class ?C if ?C

is a subclass of ?P, or if there exists an intermediate class ?D, which is a subclass
of ?P and an ancestor of class ?C. Logic queries can be used to trigger the above
logic program. For example, the query if classInHierarchyOf(ScConsExpression,?P) de-
termines whether a superclass of class ScConsExpression exists, and retrieves the
result in the variable ?P (in this case there are two solutions ?P=ScExpression and

6



Logic Predicate Description

class(?C) ?C is a class

subclassOf(?C,?P) ?C is a direct subclass of class ?P

classImplementsMethodNamed(?C, ?M) ?C implements a method named ?M

methodSendsMessage(?C, ?M,?S) ?S is a message sent by the method ?M of class ?C

Table 2
Predicates in Soul’s metalevel interface

?P=Object).

4 Experimental Results

In this section, we present two examples of how we used our technique to
document the structure of a software application. For each example, we ex-
plain the experimental setup, and present the rules that were derived by our
induction algorithm.

4.1 Induced View for Scheme Framework

Consider the class diagram in Figure 1, that shows part of a framework for
implementing Scheme interpreters (Abelson and Sussman, 1985) in Smalltalk.
It depicts two class hierarchies, ScExpression and SpecialFormHandler. The former is
used to represent Scheme expressions, whereas the latter is used to handle
the special forms defined by Scheme (such as define, if, etc.). Both hierarchies
define a newClosure method, that forms part of an instance of the factory method
design pattern, and that returns an instance of a Closure class corresponding
to the expression or special form. The idea is to speed up interpretation,
by analysing expressions and special forms only once and transforming them
into the corresponding closure object, that is then executed as many times as
needed. To this extent, the ScExpression classes implement an analyse method, that
analyses all parts of an expression, and initialises the closure object appropri-
ately. Likewise, the handle: methods in the SpecialFormHandler hierarchy decompose
the special forms, analyse the appropriate subparts and instantiate the clo-
sure object correspondingly. Both methods thus form the important part of
the analysis phase of the Scheme interpreter.

To document this important behaviour, we want to construct a view contain-
ing all methods that belong to the analyser of the Scheme interpreter. The
examples we provide to this extent to the inductive logic program are the
following.

7



ScExpression

newClosure
analyse

ScCons
Expression

newClosure
analyse

ScSequence
Expression

newClosure
analyse

SpecialForm
Handler

newClosure
handle:

IfHandler

newClosure
handle:

DefineHandler

newClosure
handle:

Fig. 1. The ScExpression class hierarchy

analyser(classImplementsMethodNamed(ScExpression,analyse)).

analyser(classImplementsMethodNamed(ScConsExpression,analyse)).

analyser(classImplementsMethodNamed(ScSequenceExpression,analyse)).

...

analyser(classImplementsMethodNamed(SpecialFormHandler,handle:)).

analyser(classImplementsMethodNamed(DefineHandler,handle:)).

analyser(classImplementsMethodNamed(IfHandler,handle:)).

Based on these examples, the inductive logic program produces the following
logic rules.

(1) intention(analyser,<?class,?selector>) if

analyser(classImplementsMethodNamed(?class,?selector)).

(2) analyser(classImplementsMethodNamed(?class, handle:)) if

methodSendsMessage(?class, handle:, newConverterFor:),

methodSendsMessage(?class, handle:, newClosure),

methodSendsMessage(?class, handle:, analyse),

classInHierarchyOf(?class,Scheme.SpecialFormHandler),

classInHierarchyOf(?class,Scheme.SpecialFormHandlerWithSuccessor),

classInHierarchyOf(?class, ?class).

(3) analyser(classImplementsMethodNamed(?class, analyse)) if

methodSendsMessage(?class, analyse, newClosure),

classInHierarchyOf(?class,Scheme.ScExpression),

classInHierarchyOf(?class, ?class).

(4) analyser(classImplementsMethodNamed(Scheme.DefineRelHandler,handle:)).

The first rule defines the intentional view in terms of the analyser predicate,
which is defined by the other logic clauses. This analyser predicate is defined
by two logic rules and one fact that were derived by the induction algorithm.
The algorithm has learned that a method is part of the ’analyser’ view if:

• it is a method named handle: defined in a class in the SpecialFormHandler hierarchy
that sends the messages newConverterFor:, newClosure and analyse (Rule 2);

• it is a method named analyse defined in a class in the ScExpression hierarchy
that sends the message newClosure (Rule 3);

• it is the method named handle: in the class DefineRelHandler (Rule 4).

8



Buffer

putAll:
getAll

SimpleBuffer

put
get

OptimizedBuffer

size:
expand
...

SynchronisedBuffer

put:
putAll:
get
getAll

Fig. 2. The Buffer class hierarchy

Both rule two and three contain some redundant conditions, such as classIn-

HierarchyOf(?class, ?class), which says that the class is part of its own hierarchy,
which is always true. This is due to a minor flow in the deduction phase of
our algorithm, but does not affect the semantic meaning of the rule.

4.2 Induced View for ’State Changing’ Methods

Our second experiment concerns the implementation of an application’s up-
date mechanism using the model-view-controller (MVC) paradigm (Krasner
and Pope, 1988). In our experimental scenario, a developer should incorporate
the MVC paradigm into an already existing application. To this extent, he uses
software views to document the specific places in the source code where the
update mechanism should be invoked. Our goal is then to help the developer
in constructing this view and identifying additional places, by deriving the
intention behind it automatically.

Figure 2 shows a library of Buffers, implemented as a hierarchy of classes.
Buffers are simple data structures that support operations for inserting and
retrieving any kind of elements. Whenever an element is added to or removed
from a buffer, its state obviously changes, and this change should be prop-
agated appropriately. In the figure, we show only those methods that are of
interest to this experiment, i.e.: the ’state changing’ methods that we will
classify in a view.

To classify the state-changing methods in a view, a developer needs to identify
these methods. He has a number of options to achieve this:

• inspect the source code and look for methods that change the value of some

9



instance variable;
• make use of the coding conventions (e.g. methods prefixed with ’get’ or

’set’);
• make use of the reflective capabilities of the development environment (e.g.

retrieve all methods manipulating an instance variable).

All three options have their respective disadvantages, however:

• inspecting the source code is a time-consuming and error-prone task;
• naming conventions are not always adhered to, so state changing methods

risk not to be included in the view;
• the standard reflective capabilities of development environment are limited.

More complex queries can be constructed, but require that a developer al-
ready knows the intention behind the view, and knows how to meta program.

Because of these difficulties, it is much easier for the developer to classify a
number of state changing methods he already identified in an extensional view
and then apply the learning algorithm to create a corresponding intentional
view. The extensional view can be described by means of the following logic
facts.

stateChange(classImplementsMethodNamed(SimpleBuffer,put:)).

stateChange(classImplementsMethodNamed(SimpleBuffer,get)).

stateChange(classImplementsMethodNamed(SynchronizedBuffer,put:)).

stateChange(classImplementsMethodNamed(SynchronizedBuffer,get)).

stateChange(classImplementsMethodNamed(OptimizedBuffer,put:)).

stateChange(classImplementsMethodNamed(Buffer,putAll:)).

...

Based on these examples, the inductive logic program produces the following
logic rules to express the intention of a ’state changing’ method:

(1) intention(stateChanging,<?class,?selector>) if

stateChange(classImplementsMethodNamed(?class,?selector)).

(2) stateChange(classImplementsMethodNamed(?class,?selector)) if

statementInMethod(assign(variable(?var),?expression),?class,?selector),

instanceVariableIn(?var,?class).

(3) stateChange(classImplementsMethodNamed(?class,?selector)) if

statementInMethod(send(variable(content),#addFirst:,?expression),?class,?selector).

(4) stateChange(classImplementsMethodNamed(?class,?selector)) if

statementInMethod(send(variable(content),#removeLast:,?expression),?class,?selector),

statementInMethod(return(?expression),?class,?selector).

(5) stateChange(classImplementsMethodNamed(?class,?selector)) if

statementInMethod(?statement,?class,?selector),

statementInMethod(send(variable(self),?message,?arguments),?class,?selector),

stateChange(classImplementsMethodNamed(?class,?message)).

These rules express that a method is part of the ’state changing’ view if:

• it performs an assignment to an instance variable (rule 2);
• it sends a message removeLast: or addFirst: to the content instance variable (rule

10



3 and 4);
• it invokes one of the preceding kinds of methods (rule 5).

As these rules show, the learning algorithm is able to derive an intentional
view that is much more concise than a view based on naming conventions.
Moreover, since these rules are discovered automatically, the developer is not
required to know the intention beforehand, nor to implement a corresponding
meta program himself.

The view’s intention is mostly expressed by rules 2 and 5, that state that a
method is state changing if it contains assignments to an object’s instance
variables or if it invokes one of those methods. However, the derived rules also
contain some peculiarities:

• Rule 3 and 4 are too restrictive. First of all, both rules hard code the partic-
ular message that is sent to the content instance variable, an instance of the
OrderedCollection class. Clearly, many other methods on this class exist that
are also state changing, but these are not considered by the rules. Second,
rule 4 states that a method is state changing if a removeLast: message is sent
and a return statement is present. Clearly, this last condition is incorrect.
It occurs in the rule’s condition because all classified methods that send the
removeLast: message also contain a return statement;

• rule 5 contains an insignificant first condition, which considers any statement
in the method’s implementation. Clearly, this condition does not affect the
meaning of the rule. It occurs due to a minor flaw in the reduction part of
the learning algorithm.

The first problem occurs because the inductive logic program detects the com-
monalities between the specific examples provided only, and cannot generalise
further. This is a documented limitation of the specific algorithm we have used,
and is unavoidable. The second problem can easily be avoided by adapting the
reduction part of the algorithm.

5 Discussion

As both experiments discussed in this paper show, the proposed approach re-
veals promising results and can be used to extract the hidden intentions behind
a software application’s source code. Kellens (Kellens, 2003) performed some
more experiments using the approach, to define rules that detect instances of
the Visitor and Factory Method design patterns. However, besides the promis-
ing results reported on in this paper, we also identified several particularities
with our implementation of the inductive logic program and our approach in
general.

11



First of all, the algorithm we used to implement the inductive logic program
proved to be sensitive to the order in which the examples are classified in
the view. Depending on this order, the rules ranged from correct and clear
to unclear and insignificant. This is a documented drawback of the algorithm
we used, and can be solved by using more advanced algorithms. The GOLEM
algorithm (Muggleton and Feng, 1990), for example, does not exhibit this
problem.

Second, we observed that a sufficient number of examples should be provided
to induce a correct set of rules. If the number is not sufficient, the rules are
often too restrictive. A small number of examples often represents only a subset
of the possible patterns that should be discovered by the induction algortithm
to produce a general rule. Alternatively, a small number of examples, that
vary sufficiently from one another, may be sufficient to produce a good rule.
This requires however that the developer already knows about the intention
behind the examples, which is not always the case. Furthermore, the amount
of background knowledge that is provided is also significant. If this amount
is insufficient, the rules may be too general or too specific to the examples
at hand. The latter problem occurs in rule 3 and 4 discussed in the previous
section, that hard code particularities of the examples instead of generalising
from them. This is a general drawback of all inductive logic programs, in
particular, and of all machine learning techniques, in general, however. To
alleviate it, we envision an approach were the intentional view is derived semi-
automatically, allowing the developer to specify extra knowledge to guide the
induction process, whenever necessary.

Third, inducing the intention behind an extensional view proved to be ex-
tremely time consuming in our experimental tool that uses the Soul inter-
preter. Even for the small-scale experiments presented in this paper, we were
forced to export all necessary information to an external logic compiler. In
this external environment, the two experiments took 30 to 40 seconds to com-
plete, which is acceptable given that our experimental algorithm is written as
a logic program itself and much more optimized implementations exist. The
reason even our relatively simple inductive logic program is so slow, is that
Soul is an experimental interpreter, that is not optimized at all. Replacing the
interpreter with a more advanced logic virtual machine will certainly speed
up the process.

Last, the performance issue also questions the scalability of our approach on
large(r)-scale systems, incorporating huge class hierarchies and many method
implementations. Because of the experimental state of our algorithm, no per-
formance tests were done, however, so this issue remains to be investigated. In
general, the performance of inductive learning algorithms grows exponentially
with the number of examples they are given as input. Our experiments suggest
that the number of examples necessary to induce a correct rule is rather small,

12



however.

6 Related Work

De Hondt (De Hondt, 1998) was the first to introduce the notion of software
classifications to group related software artifacts, as explained in Section 2.1.
Mens (Mens et al., 2002) extends this work by introducing an explicit descrip-
tion of which artifacts belong to the view, as a logic program.

Wuyts (Wuyts, 2001) also addressed the problem of keeping different software
artifacts synchronised over the lifetime of the software. As a proof-of-concept,
the design, which can be considered as a form of documentation, and the imple-
mentation of a software system are considered. Tourwé (Tourwé, 2002) shows
how the design of a software system can be documented by means of design
patterns, and provides high-level design-pattern specific transformations that
evolve the software and automatically update the documentation at the same
time. Several other authors, most notably (Murphy et al., 1995; Mens, 2000;
Murphy, 1996), have shown how coding conventions, design conventions and
even architectural styles, can be documented and checked against the imple-
mentation. This allows tools to issue a warning whenever this implementation
and the documentation are not synchronised.

Many authors reported on the use of machine learning techniques to support
the software engineering process. Most of the work concentrates on building
models to predict or estimate properties of the software development process
or artifacts. For example, Evett (Evett et al., 1998) uses genetic programming
to generate software quality models that can predict the number of faults that
will be discovered later in the development process, and Mao (Mao et al., 1998)
uses decision trees to build predictive models for the reusability of object-
oriented programs. An overview of the use of machine-learning to support
software engineering can be found in (Zhang and Tsai, 2002).

7 Conclusion

In this paper, we have shown how induced software views can be used to tackle
software documentation problems. Such induced software views document im-
portant relationships between software artifacts, make this relationship ex-
plicit in terms of an intention, and are robust towards evolution. Induced
views are created by simply enumerating some artifacts, as with extensional
views, and applying the technique of inductive logic programming to uncover
the common underlying relationships between them. Contrary to intentional

13



views, they do not require meta-programming skills or extensive knowledge
about the software from the developer. In this way, induced software views
thus create a synergy between extensional and intentional software views,
that alleviates most of their respective disadvantages, while retaining their
most important benefits. We have presented two illustrative examples, that
showed promising results and illustrated both the feasibility and usefulness
of the approach. Further experiments, with more advanced machine learning
techniques, are mandatory to validate the approach further and ensure its
scalability in larger-scale systems.

References

Abelson, H., Sussman, G., 1985. Structure and Interpretation of Computer
Programs. MIT Press.

Beck, K., 1999. Extreme Programming Explained: Embrace Change. Addison-
Wesley.

Canfora, G., Cimitile, A., December 1992. A logic-based approach to reverse
engineering tools production. Transactions on Software Engineering 18 (12),
1053–1064.

De Hondt, K., 1998. A novel approach to architectural recovery in evolving
object-oriented systems. Ph.D. thesis, Departement Informatica, Vrije Uni-
versiteit Brussel.

Deransart, P., Ed-Dbali, A., Cervoni, L., 1996. Prolog: The Standard Reference
Manual. Springer-Verlag.

Evett, M., Khoshgoftar, T., Chien, P., Allen, E., 1998. Gp-based software
quality prediction. In: Proc. 3rd Annual Genetic Programming Conference.

Fowler, M., Scott, K., 1999. UML Distilled: A Brief Guide to the Standard
Object Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., Vlissides, J., 1994. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison Wesley, Mas-
sachusetts.

Kellens, A., 2003. Using inductive logic programming to derive software views.
Tech. rep., Vrije Universiteit Brussel.

Krasner, G. E., Pope, S. T., 1988. A cookbook for using the model-view-
controller user interface paradigm in smalltalk-80. Journal of Object-
Oriented Programming 1 (3), 26–49.

Mao, Y., Sahraoui, H., Lounis, H., 1998. Reusability hypothesis verification
using machine learning techniques: a case study. In: Proc. 13th Int. Conf.
on Automated Software Engineering.

Mens, K., 2000. Automating architectural conformance checking by means
of logic meta programming. Ph.D. thesis, Departement Informatica, Vrije
Universiteit Brussel.

Mens, K., Mens, T., Wermelinger, M., 2002. Maintaining Software Through

14



Intional Source-code Views. In: Proc. Int. Conf. Software Engineering and
Knowledge Engineering. ACM Press, pp. 289–296.

Mitchell, T. M., 1997. Machine Learning. McGraw-Hill International Editions.
Muggleton, S., Feng, C., 1990. Efficient induction of logic programs. In: First

Conference on Algorithmic Learning Theory.
Murphy, G., Notkin, D., Sullivan, K., 1995. Software reflexion models: Bridg-

ing the gap between source and high-level models. In: Proc. of SIGSOFT
1995, Third ACM SIGSOFT Symposium on the Foundations of Software
Engineering. ACM Press, pp. 18–28.

Murphy, G. C., 1996. Lightweight structural summarization as an aid to soft-
ware evolution. Ph.D. thesis, Univeristy of Washington.

Pipka, J. U., 2002. Refactoring in a “test first”-world. In: Proc. Int’l Conf.
eXtreme Programming.

Tourwé, T., 2002. Automated support for framework-based software evolution.
Ph.D. thesis, Departement Informatica, Vrije Universiteit Brussel.

van Gurp, J., Bosch, J., 2001. Design Erosion: Problems & Causes. Journal of
Systems & Software 61 (2), 105–119.

Wuyts, R., 1998. Declarative Reasoning about the Structure of Object-
Oriented Systems. In: Proc. TOOLS USA’98, IEEE Computer Society
Press. pp. 112–124.

Wuyts, R., 2001. A logic meta-programming approach to support the co-
evolution of object-oriented design and implementation. Ph.D. thesis, De-
partement Informatica, Vrije Universiteit Brussel.

Wuyts, R., 2002. Starbrowser.
Zhang, D., Tsai, J., 2002. Machine learning and software engineering. In: 14th

IEEE International Conference on Tools with Artificial Intelligence.

15


